hhxxhh commited on
Commit
9eae06b
·
1 Parent(s): 3a2845e
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ultralytics/__init__.py +11 -0
  2. ultralytics/assets/bus.jpg +0 -0
  3. ultralytics/assets/zidane.jpg +0 -0
  4. ultralytics/datasets/Argoverse.yaml +73 -0
  5. ultralytics/datasets/GlobalWheat2020.yaml +54 -0
  6. ultralytics/datasets/ImageNet.yaml +2025 -0
  7. ultralytics/datasets/Objects365.yaml +443 -0
  8. ultralytics/datasets/SKU-110K.yaml +58 -0
  9. ultralytics/datasets/VOC.yaml +100 -0
  10. ultralytics/datasets/VisDrone.yaml +73 -0
  11. ultralytics/datasets/coco-pose.yaml +38 -0
  12. ultralytics/datasets/coco.yaml +115 -0
  13. ultralytics/datasets/coco128-seg.yaml +101 -0
  14. ultralytics/datasets/coco128.yaml +101 -0
  15. ultralytics/datasets/coco8-pose.yaml +25 -0
  16. ultralytics/datasets/coco8-seg.yaml +101 -0
  17. ultralytics/datasets/coco8.yaml +101 -0
  18. ultralytics/datasets/xView.yaml +153 -0
  19. ultralytics/hub/__init__.py +113 -0
  20. ultralytics/hub/auth.py +139 -0
  21. ultralytics/hub/session.py +189 -0
  22. ultralytics/hub/utils.py +217 -0
  23. ultralytics/models/README.md +45 -0
  24. ultralytics/models/rt-detr/rt-detr-l.yaml +50 -0
  25. ultralytics/models/rt-detr/rt-detr-x.yaml +54 -0
  26. ultralytics/models/v3/yolov3-spp.yaml +48 -0
  27. ultralytics/models/v3/yolov3-tiny.yaml +39 -0
  28. ultralytics/models/v3/yolov3.yaml +48 -0
  29. ultralytics/models/v5/yolov5-p6.yaml +61 -0
  30. ultralytics/models/v5/yolov5.yaml +50 -0
  31. ultralytics/models/v6/yolov6.yaml +53 -0
  32. ultralytics/models/v8/yolov8-cls.yaml +29 -0
  33. ultralytics/models/v8/yolov8-p2.yaml +54 -0
  34. ultralytics/models/v8/yolov8-p6.yaml +56 -0
  35. ultralytics/models/v8/yolov8-pose-p6.yaml +57 -0
  36. ultralytics/models/v8/yolov8-pose.yaml +47 -0
  37. ultralytics/models/v8/yolov8-seg.yaml +46 -0
  38. ultralytics/models/v8/yolov8.yaml +46 -0
  39. ultralytics/nn/__init__.py +9 -0
  40. ultralytics/nn/autobackend.py +455 -0
  41. ultralytics/nn/autoshape.py +243 -0
  42. ultralytics/nn/modules/__init__.py +29 -0
  43. ultralytics/nn/modules/block.py +304 -0
  44. ultralytics/nn/modules/conv.py +297 -0
  45. ultralytics/nn/modules/head.py +382 -0
  46. ultralytics/nn/modules/transformer.py +389 -0
  47. ultralytics/nn/modules/utils.py +78 -0
  48. ultralytics/nn/tasks.py +773 -0
  49. ultralytics/tracker/README.md +86 -0
  50. ultralytics/tracker/__init__.py +6 -0
ultralytics/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ __version__ = '8.0.114'
4
+
5
+ from ultralytics.hub import start
6
+ from ultralytics.vit.rtdetr import RTDETR
7
+ from ultralytics.vit.sam import SAM
8
+ from ultralytics.yolo.engine.model import YOLO
9
+ from ultralytics.yolo.utils.checks import check_yolo as checks
10
+
11
+ __all__ = '__version__', 'YOLO', 'SAM', 'RTDETR', 'checks', 'start' # allow simpler import
ultralytics/assets/bus.jpg ADDED
ultralytics/assets/zidane.jpg ADDED
ultralytics/datasets/Argoverse.yaml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Example usage: yolo train data=Argoverse.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── Argoverse ← downloads here (31.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: bus
23
+ 5: truck
24
+ 6: traffic_light
25
+ 7: stop_sign
26
+
27
+
28
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
29
+ download: |
30
+ import json
31
+ from tqdm import tqdm
32
+ from ultralytics.yolo.utils.downloads import download
33
+ from pathlib import Path
34
+
35
+ def argoverse2yolo(set):
36
+ labels = {}
37
+ a = json.load(open(set, "rb"))
38
+ for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
39
+ img_id = annot['image_id']
40
+ img_name = a['images'][img_id]['name']
41
+ img_label_name = f'{img_name[:-3]}txt'
42
+
43
+ cls = annot['category_id'] # instance class id
44
+ x_center, y_center, width, height = annot['bbox']
45
+ x_center = (x_center + width / 2) / 1920.0 # offset and scale
46
+ y_center = (y_center + height / 2) / 1200.0 # offset and scale
47
+ width /= 1920.0 # scale
48
+ height /= 1200.0 # scale
49
+
50
+ img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
51
+ if not img_dir.exists():
52
+ img_dir.mkdir(parents=True, exist_ok=True)
53
+
54
+ k = str(img_dir / img_label_name)
55
+ if k not in labels:
56
+ labels[k] = []
57
+ labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
58
+
59
+ for k in labels:
60
+ with open(k, "w") as f:
61
+ f.writelines(labels[k])
62
+
63
+
64
+ # Download
65
+ dir = Path(yaml['path']) # dataset root dir
66
+ urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
67
+ download(urls, dir=dir)
68
+
69
+ # Convert
70
+ annotations_dir = 'Argoverse-HD/annotations/'
71
+ (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
72
+ for d in "train.json", "val.json":
73
+ argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
ultralytics/datasets/GlobalWheat2020.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
3
+ # Example usage: yolo train data=GlobalWheat2020.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── GlobalWheat2020 ← downloads here (7.0 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
12
+ train: # train images (relative to 'path') 3422 images
13
+ - images/arvalis_1
14
+ - images/arvalis_2
15
+ - images/arvalis_3
16
+ - images/ethz_1
17
+ - images/rres_1
18
+ - images/inrae_1
19
+ - images/usask_1
20
+ val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21
+ - images/ethz_1
22
+ test: # test images (optional) 1276 images
23
+ - images/utokyo_1
24
+ - images/utokyo_2
25
+ - images/nau_1
26
+ - images/uq_1
27
+
28
+ # Classes
29
+ names:
30
+ 0: wheat_head
31
+
32
+
33
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
34
+ download: |
35
+ from ultralytics.yolo.utils.downloads import download
36
+ from pathlib import Path
37
+
38
+ # Download
39
+ dir = Path(yaml['path']) # dataset root dir
40
+ urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
41
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
42
+ download(urls, dir=dir)
43
+
44
+ # Make Directories
45
+ for p in 'annotations', 'images', 'labels':
46
+ (dir / p).mkdir(parents=True, exist_ok=True)
47
+
48
+ # Move
49
+ for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
50
+ 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
51
+ (dir / 'global-wheat-codalab-official' / p).rename(dir / 'images' / p) # move to /images
52
+ f = (dir / 'global-wheat-codalab-official' / p).with_suffix('.json') # json file
53
+ if f.exists():
54
+ f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
ultralytics/datasets/ImageNet.yaml ADDED
@@ -0,0 +1,2025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # ImageNet-1k dataset https://www.image-net.org/index.php by Stanford University
3
+ # Simplified class names from https://github.com/anishathalye/imagenet-simple-labels
4
+ # Example usage: yolo train task=classify data=imagenet
5
+ # parent
6
+ # ├── ultralytics
7
+ # └── datasets
8
+ # └── imagenet ← downloads here (144 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/imagenet # dataset root dir
13
+ train: train # train images (relative to 'path') 1281167 images
14
+ val: val # val images (relative to 'path') 50000 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: tench
20
+ 1: goldfish
21
+ 2: great white shark
22
+ 3: tiger shark
23
+ 4: hammerhead shark
24
+ 5: electric ray
25
+ 6: stingray
26
+ 7: cock
27
+ 8: hen
28
+ 9: ostrich
29
+ 10: brambling
30
+ 11: goldfinch
31
+ 12: house finch
32
+ 13: junco
33
+ 14: indigo bunting
34
+ 15: American robin
35
+ 16: bulbul
36
+ 17: jay
37
+ 18: magpie
38
+ 19: chickadee
39
+ 20: American dipper
40
+ 21: kite
41
+ 22: bald eagle
42
+ 23: vulture
43
+ 24: great grey owl
44
+ 25: fire salamander
45
+ 26: smooth newt
46
+ 27: newt
47
+ 28: spotted salamander
48
+ 29: axolotl
49
+ 30: American bullfrog
50
+ 31: tree frog
51
+ 32: tailed frog
52
+ 33: loggerhead sea turtle
53
+ 34: leatherback sea turtle
54
+ 35: mud turtle
55
+ 36: terrapin
56
+ 37: box turtle
57
+ 38: banded gecko
58
+ 39: green iguana
59
+ 40: Carolina anole
60
+ 41: desert grassland whiptail lizard
61
+ 42: agama
62
+ 43: frilled-necked lizard
63
+ 44: alligator lizard
64
+ 45: Gila monster
65
+ 46: European green lizard
66
+ 47: chameleon
67
+ 48: Komodo dragon
68
+ 49: Nile crocodile
69
+ 50: American alligator
70
+ 51: triceratops
71
+ 52: worm snake
72
+ 53: ring-necked snake
73
+ 54: eastern hog-nosed snake
74
+ 55: smooth green snake
75
+ 56: kingsnake
76
+ 57: garter snake
77
+ 58: water snake
78
+ 59: vine snake
79
+ 60: night snake
80
+ 61: boa constrictor
81
+ 62: African rock python
82
+ 63: Indian cobra
83
+ 64: green mamba
84
+ 65: sea snake
85
+ 66: Saharan horned viper
86
+ 67: eastern diamondback rattlesnake
87
+ 68: sidewinder
88
+ 69: trilobite
89
+ 70: harvestman
90
+ 71: scorpion
91
+ 72: yellow garden spider
92
+ 73: barn spider
93
+ 74: European garden spider
94
+ 75: southern black widow
95
+ 76: tarantula
96
+ 77: wolf spider
97
+ 78: tick
98
+ 79: centipede
99
+ 80: black grouse
100
+ 81: ptarmigan
101
+ 82: ruffed grouse
102
+ 83: prairie grouse
103
+ 84: peacock
104
+ 85: quail
105
+ 86: partridge
106
+ 87: grey parrot
107
+ 88: macaw
108
+ 89: sulphur-crested cockatoo
109
+ 90: lorikeet
110
+ 91: coucal
111
+ 92: bee eater
112
+ 93: hornbill
113
+ 94: hummingbird
114
+ 95: jacamar
115
+ 96: toucan
116
+ 97: duck
117
+ 98: red-breasted merganser
118
+ 99: goose
119
+ 100: black swan
120
+ 101: tusker
121
+ 102: echidna
122
+ 103: platypus
123
+ 104: wallaby
124
+ 105: koala
125
+ 106: wombat
126
+ 107: jellyfish
127
+ 108: sea anemone
128
+ 109: brain coral
129
+ 110: flatworm
130
+ 111: nematode
131
+ 112: conch
132
+ 113: snail
133
+ 114: slug
134
+ 115: sea slug
135
+ 116: chiton
136
+ 117: chambered nautilus
137
+ 118: Dungeness crab
138
+ 119: rock crab
139
+ 120: fiddler crab
140
+ 121: red king crab
141
+ 122: American lobster
142
+ 123: spiny lobster
143
+ 124: crayfish
144
+ 125: hermit crab
145
+ 126: isopod
146
+ 127: white stork
147
+ 128: black stork
148
+ 129: spoonbill
149
+ 130: flamingo
150
+ 131: little blue heron
151
+ 132: great egret
152
+ 133: bittern
153
+ 134: crane (bird)
154
+ 135: limpkin
155
+ 136: common gallinule
156
+ 137: American coot
157
+ 138: bustard
158
+ 139: ruddy turnstone
159
+ 140: dunlin
160
+ 141: common redshank
161
+ 142: dowitcher
162
+ 143: oystercatcher
163
+ 144: pelican
164
+ 145: king penguin
165
+ 146: albatross
166
+ 147: grey whale
167
+ 148: killer whale
168
+ 149: dugong
169
+ 150: sea lion
170
+ 151: Chihuahua
171
+ 152: Japanese Chin
172
+ 153: Maltese
173
+ 154: Pekingese
174
+ 155: Shih Tzu
175
+ 156: King Charles Spaniel
176
+ 157: Papillon
177
+ 158: toy terrier
178
+ 159: Rhodesian Ridgeback
179
+ 160: Afghan Hound
180
+ 161: Basset Hound
181
+ 162: Beagle
182
+ 163: Bloodhound
183
+ 164: Bluetick Coonhound
184
+ 165: Black and Tan Coonhound
185
+ 166: Treeing Walker Coonhound
186
+ 167: English foxhound
187
+ 168: Redbone Coonhound
188
+ 169: borzoi
189
+ 170: Irish Wolfhound
190
+ 171: Italian Greyhound
191
+ 172: Whippet
192
+ 173: Ibizan Hound
193
+ 174: Norwegian Elkhound
194
+ 175: Otterhound
195
+ 176: Saluki
196
+ 177: Scottish Deerhound
197
+ 178: Weimaraner
198
+ 179: Staffordshire Bull Terrier
199
+ 180: American Staffordshire Terrier
200
+ 181: Bedlington Terrier
201
+ 182: Border Terrier
202
+ 183: Kerry Blue Terrier
203
+ 184: Irish Terrier
204
+ 185: Norfolk Terrier
205
+ 186: Norwich Terrier
206
+ 187: Yorkshire Terrier
207
+ 188: Wire Fox Terrier
208
+ 189: Lakeland Terrier
209
+ 190: Sealyham Terrier
210
+ 191: Airedale Terrier
211
+ 192: Cairn Terrier
212
+ 193: Australian Terrier
213
+ 194: Dandie Dinmont Terrier
214
+ 195: Boston Terrier
215
+ 196: Miniature Schnauzer
216
+ 197: Giant Schnauzer
217
+ 198: Standard Schnauzer
218
+ 199: Scottish Terrier
219
+ 200: Tibetan Terrier
220
+ 201: Australian Silky Terrier
221
+ 202: Soft-coated Wheaten Terrier
222
+ 203: West Highland White Terrier
223
+ 204: Lhasa Apso
224
+ 205: Flat-Coated Retriever
225
+ 206: Curly-coated Retriever
226
+ 207: Golden Retriever
227
+ 208: Labrador Retriever
228
+ 209: Chesapeake Bay Retriever
229
+ 210: German Shorthaired Pointer
230
+ 211: Vizsla
231
+ 212: English Setter
232
+ 213: Irish Setter
233
+ 214: Gordon Setter
234
+ 215: Brittany
235
+ 216: Clumber Spaniel
236
+ 217: English Springer Spaniel
237
+ 218: Welsh Springer Spaniel
238
+ 219: Cocker Spaniels
239
+ 220: Sussex Spaniel
240
+ 221: Irish Water Spaniel
241
+ 222: Kuvasz
242
+ 223: Schipperke
243
+ 224: Groenendael
244
+ 225: Malinois
245
+ 226: Briard
246
+ 227: Australian Kelpie
247
+ 228: Komondor
248
+ 229: Old English Sheepdog
249
+ 230: Shetland Sheepdog
250
+ 231: collie
251
+ 232: Border Collie
252
+ 233: Bouvier des Flandres
253
+ 234: Rottweiler
254
+ 235: German Shepherd Dog
255
+ 236: Dobermann
256
+ 237: Miniature Pinscher
257
+ 238: Greater Swiss Mountain Dog
258
+ 239: Bernese Mountain Dog
259
+ 240: Appenzeller Sennenhund
260
+ 241: Entlebucher Sennenhund
261
+ 242: Boxer
262
+ 243: Bullmastiff
263
+ 244: Tibetan Mastiff
264
+ 245: French Bulldog
265
+ 246: Great Dane
266
+ 247: St. Bernard
267
+ 248: husky
268
+ 249: Alaskan Malamute
269
+ 250: Siberian Husky
270
+ 251: Dalmatian
271
+ 252: Affenpinscher
272
+ 253: Basenji
273
+ 254: pug
274
+ 255: Leonberger
275
+ 256: Newfoundland
276
+ 257: Pyrenean Mountain Dog
277
+ 258: Samoyed
278
+ 259: Pomeranian
279
+ 260: Chow Chow
280
+ 261: Keeshond
281
+ 262: Griffon Bruxellois
282
+ 263: Pembroke Welsh Corgi
283
+ 264: Cardigan Welsh Corgi
284
+ 265: Toy Poodle
285
+ 266: Miniature Poodle
286
+ 267: Standard Poodle
287
+ 268: Mexican hairless dog
288
+ 269: grey wolf
289
+ 270: Alaskan tundra wolf
290
+ 271: red wolf
291
+ 272: coyote
292
+ 273: dingo
293
+ 274: dhole
294
+ 275: African wild dog
295
+ 276: hyena
296
+ 277: red fox
297
+ 278: kit fox
298
+ 279: Arctic fox
299
+ 280: grey fox
300
+ 281: tabby cat
301
+ 282: tiger cat
302
+ 283: Persian cat
303
+ 284: Siamese cat
304
+ 285: Egyptian Mau
305
+ 286: cougar
306
+ 287: lynx
307
+ 288: leopard
308
+ 289: snow leopard
309
+ 290: jaguar
310
+ 291: lion
311
+ 292: tiger
312
+ 293: cheetah
313
+ 294: brown bear
314
+ 295: American black bear
315
+ 296: polar bear
316
+ 297: sloth bear
317
+ 298: mongoose
318
+ 299: meerkat
319
+ 300: tiger beetle
320
+ 301: ladybug
321
+ 302: ground beetle
322
+ 303: longhorn beetle
323
+ 304: leaf beetle
324
+ 305: dung beetle
325
+ 306: rhinoceros beetle
326
+ 307: weevil
327
+ 308: fly
328
+ 309: bee
329
+ 310: ant
330
+ 311: grasshopper
331
+ 312: cricket
332
+ 313: stick insect
333
+ 314: cockroach
334
+ 315: mantis
335
+ 316: cicada
336
+ 317: leafhopper
337
+ 318: lacewing
338
+ 319: dragonfly
339
+ 320: damselfly
340
+ 321: red admiral
341
+ 322: ringlet
342
+ 323: monarch butterfly
343
+ 324: small white
344
+ 325: sulphur butterfly
345
+ 326: gossamer-winged butterfly
346
+ 327: starfish
347
+ 328: sea urchin
348
+ 329: sea cucumber
349
+ 330: cottontail rabbit
350
+ 331: hare
351
+ 332: Angora rabbit
352
+ 333: hamster
353
+ 334: porcupine
354
+ 335: fox squirrel
355
+ 336: marmot
356
+ 337: beaver
357
+ 338: guinea pig
358
+ 339: common sorrel
359
+ 340: zebra
360
+ 341: pig
361
+ 342: wild boar
362
+ 343: warthog
363
+ 344: hippopotamus
364
+ 345: ox
365
+ 346: water buffalo
366
+ 347: bison
367
+ 348: ram
368
+ 349: bighorn sheep
369
+ 350: Alpine ibex
370
+ 351: hartebeest
371
+ 352: impala
372
+ 353: gazelle
373
+ 354: dromedary
374
+ 355: llama
375
+ 356: weasel
376
+ 357: mink
377
+ 358: European polecat
378
+ 359: black-footed ferret
379
+ 360: otter
380
+ 361: skunk
381
+ 362: badger
382
+ 363: armadillo
383
+ 364: three-toed sloth
384
+ 365: orangutan
385
+ 366: gorilla
386
+ 367: chimpanzee
387
+ 368: gibbon
388
+ 369: siamang
389
+ 370: guenon
390
+ 371: patas monkey
391
+ 372: baboon
392
+ 373: macaque
393
+ 374: langur
394
+ 375: black-and-white colobus
395
+ 376: proboscis monkey
396
+ 377: marmoset
397
+ 378: white-headed capuchin
398
+ 379: howler monkey
399
+ 380: titi
400
+ 381: Geoffroy's spider monkey
401
+ 382: common squirrel monkey
402
+ 383: ring-tailed lemur
403
+ 384: indri
404
+ 385: Asian elephant
405
+ 386: African bush elephant
406
+ 387: red panda
407
+ 388: giant panda
408
+ 389: snoek
409
+ 390: eel
410
+ 391: coho salmon
411
+ 392: rock beauty
412
+ 393: clownfish
413
+ 394: sturgeon
414
+ 395: garfish
415
+ 396: lionfish
416
+ 397: pufferfish
417
+ 398: abacus
418
+ 399: abaya
419
+ 400: academic gown
420
+ 401: accordion
421
+ 402: acoustic guitar
422
+ 403: aircraft carrier
423
+ 404: airliner
424
+ 405: airship
425
+ 406: altar
426
+ 407: ambulance
427
+ 408: amphibious vehicle
428
+ 409: analog clock
429
+ 410: apiary
430
+ 411: apron
431
+ 412: waste container
432
+ 413: assault rifle
433
+ 414: backpack
434
+ 415: bakery
435
+ 416: balance beam
436
+ 417: balloon
437
+ 418: ballpoint pen
438
+ 419: Band-Aid
439
+ 420: banjo
440
+ 421: baluster
441
+ 422: barbell
442
+ 423: barber chair
443
+ 424: barbershop
444
+ 425: barn
445
+ 426: barometer
446
+ 427: barrel
447
+ 428: wheelbarrow
448
+ 429: baseball
449
+ 430: basketball
450
+ 431: bassinet
451
+ 432: bassoon
452
+ 433: swimming cap
453
+ 434: bath towel
454
+ 435: bathtub
455
+ 436: station wagon
456
+ 437: lighthouse
457
+ 438: beaker
458
+ 439: military cap
459
+ 440: beer bottle
460
+ 441: beer glass
461
+ 442: bell-cot
462
+ 443: bib
463
+ 444: tandem bicycle
464
+ 445: bikini
465
+ 446: ring binder
466
+ 447: binoculars
467
+ 448: birdhouse
468
+ 449: boathouse
469
+ 450: bobsleigh
470
+ 451: bolo tie
471
+ 452: poke bonnet
472
+ 453: bookcase
473
+ 454: bookstore
474
+ 455: bottle cap
475
+ 456: bow
476
+ 457: bow tie
477
+ 458: brass
478
+ 459: bra
479
+ 460: breakwater
480
+ 461: breastplate
481
+ 462: broom
482
+ 463: bucket
483
+ 464: buckle
484
+ 465: bulletproof vest
485
+ 466: high-speed train
486
+ 467: butcher shop
487
+ 468: taxicab
488
+ 469: cauldron
489
+ 470: candle
490
+ 471: cannon
491
+ 472: canoe
492
+ 473: can opener
493
+ 474: cardigan
494
+ 475: car mirror
495
+ 476: carousel
496
+ 477: tool kit
497
+ 478: carton
498
+ 479: car wheel
499
+ 480: automated teller machine
500
+ 481: cassette
501
+ 482: cassette player
502
+ 483: castle
503
+ 484: catamaran
504
+ 485: CD player
505
+ 486: cello
506
+ 487: mobile phone
507
+ 488: chain
508
+ 489: chain-link fence
509
+ 490: chain mail
510
+ 491: chainsaw
511
+ 492: chest
512
+ 493: chiffonier
513
+ 494: chime
514
+ 495: china cabinet
515
+ 496: Christmas stocking
516
+ 497: church
517
+ 498: movie theater
518
+ 499: cleaver
519
+ 500: cliff dwelling
520
+ 501: cloak
521
+ 502: clogs
522
+ 503: cocktail shaker
523
+ 504: coffee mug
524
+ 505: coffeemaker
525
+ 506: coil
526
+ 507: combination lock
527
+ 508: computer keyboard
528
+ 509: confectionery store
529
+ 510: container ship
530
+ 511: convertible
531
+ 512: corkscrew
532
+ 513: cornet
533
+ 514: cowboy boot
534
+ 515: cowboy hat
535
+ 516: cradle
536
+ 517: crane (machine)
537
+ 518: crash helmet
538
+ 519: crate
539
+ 520: infant bed
540
+ 521: Crock Pot
541
+ 522: croquet ball
542
+ 523: crutch
543
+ 524: cuirass
544
+ 525: dam
545
+ 526: desk
546
+ 527: desktop computer
547
+ 528: rotary dial telephone
548
+ 529: diaper
549
+ 530: digital clock
550
+ 531: digital watch
551
+ 532: dining table
552
+ 533: dishcloth
553
+ 534: dishwasher
554
+ 535: disc brake
555
+ 536: dock
556
+ 537: dog sled
557
+ 538: dome
558
+ 539: doormat
559
+ 540: drilling rig
560
+ 541: drum
561
+ 542: drumstick
562
+ 543: dumbbell
563
+ 544: Dutch oven
564
+ 545: electric fan
565
+ 546: electric guitar
566
+ 547: electric locomotive
567
+ 548: entertainment center
568
+ 549: envelope
569
+ 550: espresso machine
570
+ 551: face powder
571
+ 552: feather boa
572
+ 553: filing cabinet
573
+ 554: fireboat
574
+ 555: fire engine
575
+ 556: fire screen sheet
576
+ 557: flagpole
577
+ 558: flute
578
+ 559: folding chair
579
+ 560: football helmet
580
+ 561: forklift
581
+ 562: fountain
582
+ 563: fountain pen
583
+ 564: four-poster bed
584
+ 565: freight car
585
+ 566: French horn
586
+ 567: frying pan
587
+ 568: fur coat
588
+ 569: garbage truck
589
+ 570: gas mask
590
+ 571: gas pump
591
+ 572: goblet
592
+ 573: go-kart
593
+ 574: golf ball
594
+ 575: golf cart
595
+ 576: gondola
596
+ 577: gong
597
+ 578: gown
598
+ 579: grand piano
599
+ 580: greenhouse
600
+ 581: grille
601
+ 582: grocery store
602
+ 583: guillotine
603
+ 584: barrette
604
+ 585: hair spray
605
+ 586: half-track
606
+ 587: hammer
607
+ 588: hamper
608
+ 589: hair dryer
609
+ 590: hand-held computer
610
+ 591: handkerchief
611
+ 592: hard disk drive
612
+ 593: harmonica
613
+ 594: harp
614
+ 595: harvester
615
+ 596: hatchet
616
+ 597: holster
617
+ 598: home theater
618
+ 599: honeycomb
619
+ 600: hook
620
+ 601: hoop skirt
621
+ 602: horizontal bar
622
+ 603: horse-drawn vehicle
623
+ 604: hourglass
624
+ 605: iPod
625
+ 606: clothes iron
626
+ 607: jack-o'-lantern
627
+ 608: jeans
628
+ 609: jeep
629
+ 610: T-shirt
630
+ 611: jigsaw puzzle
631
+ 612: pulled rickshaw
632
+ 613: joystick
633
+ 614: kimono
634
+ 615: knee pad
635
+ 616: knot
636
+ 617: lab coat
637
+ 618: ladle
638
+ 619: lampshade
639
+ 620: laptop computer
640
+ 621: lawn mower
641
+ 622: lens cap
642
+ 623: paper knife
643
+ 624: library
644
+ 625: lifeboat
645
+ 626: lighter
646
+ 627: limousine
647
+ 628: ocean liner
648
+ 629: lipstick
649
+ 630: slip-on shoe
650
+ 631: lotion
651
+ 632: speaker
652
+ 633: loupe
653
+ 634: sawmill
654
+ 635: magnetic compass
655
+ 636: mail bag
656
+ 637: mailbox
657
+ 638: tights
658
+ 639: tank suit
659
+ 640: manhole cover
660
+ 641: maraca
661
+ 642: marimba
662
+ 643: mask
663
+ 644: match
664
+ 645: maypole
665
+ 646: maze
666
+ 647: measuring cup
667
+ 648: medicine chest
668
+ 649: megalith
669
+ 650: microphone
670
+ 651: microwave oven
671
+ 652: military uniform
672
+ 653: milk can
673
+ 654: minibus
674
+ 655: miniskirt
675
+ 656: minivan
676
+ 657: missile
677
+ 658: mitten
678
+ 659: mixing bowl
679
+ 660: mobile home
680
+ 661: Model T
681
+ 662: modem
682
+ 663: monastery
683
+ 664: monitor
684
+ 665: moped
685
+ 666: mortar
686
+ 667: square academic cap
687
+ 668: mosque
688
+ 669: mosquito net
689
+ 670: scooter
690
+ 671: mountain bike
691
+ 672: tent
692
+ 673: computer mouse
693
+ 674: mousetrap
694
+ 675: moving van
695
+ 676: muzzle
696
+ 677: nail
697
+ 678: neck brace
698
+ 679: necklace
699
+ 680: nipple
700
+ 681: notebook computer
701
+ 682: obelisk
702
+ 683: oboe
703
+ 684: ocarina
704
+ 685: odometer
705
+ 686: oil filter
706
+ 687: organ
707
+ 688: oscilloscope
708
+ 689: overskirt
709
+ 690: bullock cart
710
+ 691: oxygen mask
711
+ 692: packet
712
+ 693: paddle
713
+ 694: paddle wheel
714
+ 695: padlock
715
+ 696: paintbrush
716
+ 697: pajamas
717
+ 698: palace
718
+ 699: pan flute
719
+ 700: paper towel
720
+ 701: parachute
721
+ 702: parallel bars
722
+ 703: park bench
723
+ 704: parking meter
724
+ 705: passenger car
725
+ 706: patio
726
+ 707: payphone
727
+ 708: pedestal
728
+ 709: pencil case
729
+ 710: pencil sharpener
730
+ 711: perfume
731
+ 712: Petri dish
732
+ 713: photocopier
733
+ 714: plectrum
734
+ 715: Pickelhaube
735
+ 716: picket fence
736
+ 717: pickup truck
737
+ 718: pier
738
+ 719: piggy bank
739
+ 720: pill bottle
740
+ 721: pillow
741
+ 722: ping-pong ball
742
+ 723: pinwheel
743
+ 724: pirate ship
744
+ 725: pitcher
745
+ 726: hand plane
746
+ 727: planetarium
747
+ 728: plastic bag
748
+ 729: plate rack
749
+ 730: plow
750
+ 731: plunger
751
+ 732: Polaroid camera
752
+ 733: pole
753
+ 734: police van
754
+ 735: poncho
755
+ 736: billiard table
756
+ 737: soda bottle
757
+ 738: pot
758
+ 739: potter's wheel
759
+ 740: power drill
760
+ 741: prayer rug
761
+ 742: printer
762
+ 743: prison
763
+ 744: projectile
764
+ 745: projector
765
+ 746: hockey puck
766
+ 747: punching bag
767
+ 748: purse
768
+ 749: quill
769
+ 750: quilt
770
+ 751: race car
771
+ 752: racket
772
+ 753: radiator
773
+ 754: radio
774
+ 755: radio telescope
775
+ 756: rain barrel
776
+ 757: recreational vehicle
777
+ 758: reel
778
+ 759: reflex camera
779
+ 760: refrigerator
780
+ 761: remote control
781
+ 762: restaurant
782
+ 763: revolver
783
+ 764: rifle
784
+ 765: rocking chair
785
+ 766: rotisserie
786
+ 767: eraser
787
+ 768: rugby ball
788
+ 769: ruler
789
+ 770: running shoe
790
+ 771: safe
791
+ 772: safety pin
792
+ 773: salt shaker
793
+ 774: sandal
794
+ 775: sarong
795
+ 776: saxophone
796
+ 777: scabbard
797
+ 778: weighing scale
798
+ 779: school bus
799
+ 780: schooner
800
+ 781: scoreboard
801
+ 782: CRT screen
802
+ 783: screw
803
+ 784: screwdriver
804
+ 785: seat belt
805
+ 786: sewing machine
806
+ 787: shield
807
+ 788: shoe store
808
+ 789: shoji
809
+ 790: shopping basket
810
+ 791: shopping cart
811
+ 792: shovel
812
+ 793: shower cap
813
+ 794: shower curtain
814
+ 795: ski
815
+ 796: ski mask
816
+ 797: sleeping bag
817
+ 798: slide rule
818
+ 799: sliding door
819
+ 800: slot machine
820
+ 801: snorkel
821
+ 802: snowmobile
822
+ 803: snowplow
823
+ 804: soap dispenser
824
+ 805: soccer ball
825
+ 806: sock
826
+ 807: solar thermal collector
827
+ 808: sombrero
828
+ 809: soup bowl
829
+ 810: space bar
830
+ 811: space heater
831
+ 812: space shuttle
832
+ 813: spatula
833
+ 814: motorboat
834
+ 815: spider web
835
+ 816: spindle
836
+ 817: sports car
837
+ 818: spotlight
838
+ 819: stage
839
+ 820: steam locomotive
840
+ 821: through arch bridge
841
+ 822: steel drum
842
+ 823: stethoscope
843
+ 824: scarf
844
+ 825: stone wall
845
+ 826: stopwatch
846
+ 827: stove
847
+ 828: strainer
848
+ 829: tram
849
+ 830: stretcher
850
+ 831: couch
851
+ 832: stupa
852
+ 833: submarine
853
+ 834: suit
854
+ 835: sundial
855
+ 836: sunglass
856
+ 837: sunglasses
857
+ 838: sunscreen
858
+ 839: suspension bridge
859
+ 840: mop
860
+ 841: sweatshirt
861
+ 842: swimsuit
862
+ 843: swing
863
+ 844: switch
864
+ 845: syringe
865
+ 846: table lamp
866
+ 847: tank
867
+ 848: tape player
868
+ 849: teapot
869
+ 850: teddy bear
870
+ 851: television
871
+ 852: tennis ball
872
+ 853: thatched roof
873
+ 854: front curtain
874
+ 855: thimble
875
+ 856: threshing machine
876
+ 857: throne
877
+ 858: tile roof
878
+ 859: toaster
879
+ 860: tobacco shop
880
+ 861: toilet seat
881
+ 862: torch
882
+ 863: totem pole
883
+ 864: tow truck
884
+ 865: toy store
885
+ 866: tractor
886
+ 867: semi-trailer truck
887
+ 868: tray
888
+ 869: trench coat
889
+ 870: tricycle
890
+ 871: trimaran
891
+ 872: tripod
892
+ 873: triumphal arch
893
+ 874: trolleybus
894
+ 875: trombone
895
+ 876: tub
896
+ 877: turnstile
897
+ 878: typewriter keyboard
898
+ 879: umbrella
899
+ 880: unicycle
900
+ 881: upright piano
901
+ 882: vacuum cleaner
902
+ 883: vase
903
+ 884: vault
904
+ 885: velvet
905
+ 886: vending machine
906
+ 887: vestment
907
+ 888: viaduct
908
+ 889: violin
909
+ 890: volleyball
910
+ 891: waffle iron
911
+ 892: wall clock
912
+ 893: wallet
913
+ 894: wardrobe
914
+ 895: military aircraft
915
+ 896: sink
916
+ 897: washing machine
917
+ 898: water bottle
918
+ 899: water jug
919
+ 900: water tower
920
+ 901: whiskey jug
921
+ 902: whistle
922
+ 903: wig
923
+ 904: window screen
924
+ 905: window shade
925
+ 906: Windsor tie
926
+ 907: wine bottle
927
+ 908: wing
928
+ 909: wok
929
+ 910: wooden spoon
930
+ 911: wool
931
+ 912: split-rail fence
932
+ 913: shipwreck
933
+ 914: yawl
934
+ 915: yurt
935
+ 916: website
936
+ 917: comic book
937
+ 918: crossword
938
+ 919: traffic sign
939
+ 920: traffic light
940
+ 921: dust jacket
941
+ 922: menu
942
+ 923: plate
943
+ 924: guacamole
944
+ 925: consomme
945
+ 926: hot pot
946
+ 927: trifle
947
+ 928: ice cream
948
+ 929: ice pop
949
+ 930: baguette
950
+ 931: bagel
951
+ 932: pretzel
952
+ 933: cheeseburger
953
+ 934: hot dog
954
+ 935: mashed potato
955
+ 936: cabbage
956
+ 937: broccoli
957
+ 938: cauliflower
958
+ 939: zucchini
959
+ 940: spaghetti squash
960
+ 941: acorn squash
961
+ 942: butternut squash
962
+ 943: cucumber
963
+ 944: artichoke
964
+ 945: bell pepper
965
+ 946: cardoon
966
+ 947: mushroom
967
+ 948: Granny Smith
968
+ 949: strawberry
969
+ 950: orange
970
+ 951: lemon
971
+ 952: fig
972
+ 953: pineapple
973
+ 954: banana
974
+ 955: jackfruit
975
+ 956: custard apple
976
+ 957: pomegranate
977
+ 958: hay
978
+ 959: carbonara
979
+ 960: chocolate syrup
980
+ 961: dough
981
+ 962: meatloaf
982
+ 963: pizza
983
+ 964: pot pie
984
+ 965: burrito
985
+ 966: red wine
986
+ 967: espresso
987
+ 968: cup
988
+ 969: eggnog
989
+ 970: alp
990
+ 971: bubble
991
+ 972: cliff
992
+ 973: coral reef
993
+ 974: geyser
994
+ 975: lakeshore
995
+ 976: promontory
996
+ 977: shoal
997
+ 978: seashore
998
+ 979: valley
999
+ 980: volcano
1000
+ 981: baseball player
1001
+ 982: bridegroom
1002
+ 983: scuba diver
1003
+ 984: rapeseed
1004
+ 985: daisy
1005
+ 986: yellow lady's slipper
1006
+ 987: corn
1007
+ 988: acorn
1008
+ 989: rose hip
1009
+ 990: horse chestnut seed
1010
+ 991: coral fungus
1011
+ 992: agaric
1012
+ 993: gyromitra
1013
+ 994: stinkhorn mushroom
1014
+ 995: earth star
1015
+ 996: hen-of-the-woods
1016
+ 997: bolete
1017
+ 998: ear
1018
+ 999: toilet paper
1019
+
1020
+ # Imagenet class codes to human-readable names
1021
+ map:
1022
+ n01440764: tench
1023
+ n01443537: goldfish
1024
+ n01484850: great_white_shark
1025
+ n01491361: tiger_shark
1026
+ n01494475: hammerhead
1027
+ n01496331: electric_ray
1028
+ n01498041: stingray
1029
+ n01514668: cock
1030
+ n01514859: hen
1031
+ n01518878: ostrich
1032
+ n01530575: brambling
1033
+ n01531178: goldfinch
1034
+ n01532829: house_finch
1035
+ n01534433: junco
1036
+ n01537544: indigo_bunting
1037
+ n01558993: robin
1038
+ n01560419: bulbul
1039
+ n01580077: jay
1040
+ n01582220: magpie
1041
+ n01592084: chickadee
1042
+ n01601694: water_ouzel
1043
+ n01608432: kite
1044
+ n01614925: bald_eagle
1045
+ n01616318: vulture
1046
+ n01622779: great_grey_owl
1047
+ n01629819: European_fire_salamander
1048
+ n01630670: common_newt
1049
+ n01631663: eft
1050
+ n01632458: spotted_salamander
1051
+ n01632777: axolotl
1052
+ n01641577: bullfrog
1053
+ n01644373: tree_frog
1054
+ n01644900: tailed_frog
1055
+ n01664065: loggerhead
1056
+ n01665541: leatherback_turtle
1057
+ n01667114: mud_turtle
1058
+ n01667778: terrapin
1059
+ n01669191: box_turtle
1060
+ n01675722: banded_gecko
1061
+ n01677366: common_iguana
1062
+ n01682714: American_chameleon
1063
+ n01685808: whiptail
1064
+ n01687978: agama
1065
+ n01688243: frilled_lizard
1066
+ n01689811: alligator_lizard
1067
+ n01692333: Gila_monster
1068
+ n01693334: green_lizard
1069
+ n01694178: African_chameleon
1070
+ n01695060: Komodo_dragon
1071
+ n01697457: African_crocodile
1072
+ n01698640: American_alligator
1073
+ n01704323: triceratops
1074
+ n01728572: thunder_snake
1075
+ n01728920: ringneck_snake
1076
+ n01729322: hognose_snake
1077
+ n01729977: green_snake
1078
+ n01734418: king_snake
1079
+ n01735189: garter_snake
1080
+ n01737021: water_snake
1081
+ n01739381: vine_snake
1082
+ n01740131: night_snake
1083
+ n01742172: boa_constrictor
1084
+ n01744401: rock_python
1085
+ n01748264: Indian_cobra
1086
+ n01749939: green_mamba
1087
+ n01751748: sea_snake
1088
+ n01753488: horned_viper
1089
+ n01755581: diamondback
1090
+ n01756291: sidewinder
1091
+ n01768244: trilobite
1092
+ n01770081: harvestman
1093
+ n01770393: scorpion
1094
+ n01773157: black_and_gold_garden_spider
1095
+ n01773549: barn_spider
1096
+ n01773797: garden_spider
1097
+ n01774384: black_widow
1098
+ n01774750: tarantula
1099
+ n01775062: wolf_spider
1100
+ n01776313: tick
1101
+ n01784675: centipede
1102
+ n01795545: black_grouse
1103
+ n01796340: ptarmigan
1104
+ n01797886: ruffed_grouse
1105
+ n01798484: prairie_chicken
1106
+ n01806143: peacock
1107
+ n01806567: quail
1108
+ n01807496: partridge
1109
+ n01817953: African_grey
1110
+ n01818515: macaw
1111
+ n01819313: sulphur-crested_cockatoo
1112
+ n01820546: lorikeet
1113
+ n01824575: coucal
1114
+ n01828970: bee_eater
1115
+ n01829413: hornbill
1116
+ n01833805: hummingbird
1117
+ n01843065: jacamar
1118
+ n01843383: toucan
1119
+ n01847000: drake
1120
+ n01855032: red-breasted_merganser
1121
+ n01855672: goose
1122
+ n01860187: black_swan
1123
+ n01871265: tusker
1124
+ n01872401: echidna
1125
+ n01873310: platypus
1126
+ n01877812: wallaby
1127
+ n01882714: koala
1128
+ n01883070: wombat
1129
+ n01910747: jellyfish
1130
+ n01914609: sea_anemone
1131
+ n01917289: brain_coral
1132
+ n01924916: flatworm
1133
+ n01930112: nematode
1134
+ n01943899: conch
1135
+ n01944390: snail
1136
+ n01945685: slug
1137
+ n01950731: sea_slug
1138
+ n01955084: chiton
1139
+ n01968897: chambered_nautilus
1140
+ n01978287: Dungeness_crab
1141
+ n01978455: rock_crab
1142
+ n01980166: fiddler_crab
1143
+ n01981276: king_crab
1144
+ n01983481: American_lobster
1145
+ n01984695: spiny_lobster
1146
+ n01985128: crayfish
1147
+ n01986214: hermit_crab
1148
+ n01990800: isopod
1149
+ n02002556: white_stork
1150
+ n02002724: black_stork
1151
+ n02006656: spoonbill
1152
+ n02007558: flamingo
1153
+ n02009229: little_blue_heron
1154
+ n02009912: American_egret
1155
+ n02011460: bittern
1156
+ n02012849: crane_(bird)
1157
+ n02013706: limpkin
1158
+ n02017213: European_gallinule
1159
+ n02018207: American_coot
1160
+ n02018795: bustard
1161
+ n02025239: ruddy_turnstone
1162
+ n02027492: red-backed_sandpiper
1163
+ n02028035: redshank
1164
+ n02033041: dowitcher
1165
+ n02037110: oystercatcher
1166
+ n02051845: pelican
1167
+ n02056570: king_penguin
1168
+ n02058221: albatross
1169
+ n02066245: grey_whale
1170
+ n02071294: killer_whale
1171
+ n02074367: dugong
1172
+ n02077923: sea_lion
1173
+ n02085620: Chihuahua
1174
+ n02085782: Japanese_spaniel
1175
+ n02085936: Maltese_dog
1176
+ n02086079: Pekinese
1177
+ n02086240: Shih-Tzu
1178
+ n02086646: Blenheim_spaniel
1179
+ n02086910: papillon
1180
+ n02087046: toy_terrier
1181
+ n02087394: Rhodesian_ridgeback
1182
+ n02088094: Afghan_hound
1183
+ n02088238: basset
1184
+ n02088364: beagle
1185
+ n02088466: bloodhound
1186
+ n02088632: bluetick
1187
+ n02089078: black-and-tan_coonhound
1188
+ n02089867: Walker_hound
1189
+ n02089973: English_foxhound
1190
+ n02090379: redbone
1191
+ n02090622: borzoi
1192
+ n02090721: Irish_wolfhound
1193
+ n02091032: Italian_greyhound
1194
+ n02091134: whippet
1195
+ n02091244: Ibizan_hound
1196
+ n02091467: Norwegian_elkhound
1197
+ n02091635: otterhound
1198
+ n02091831: Saluki
1199
+ n02092002: Scottish_deerhound
1200
+ n02092339: Weimaraner
1201
+ n02093256: Staffordshire_bullterrier
1202
+ n02093428: American_Staffordshire_terrier
1203
+ n02093647: Bedlington_terrier
1204
+ n02093754: Border_terrier
1205
+ n02093859: Kerry_blue_terrier
1206
+ n02093991: Irish_terrier
1207
+ n02094114: Norfolk_terrier
1208
+ n02094258: Norwich_terrier
1209
+ n02094433: Yorkshire_terrier
1210
+ n02095314: wire-haired_fox_terrier
1211
+ n02095570: Lakeland_terrier
1212
+ n02095889: Sealyham_terrier
1213
+ n02096051: Airedale
1214
+ n02096177: cairn
1215
+ n02096294: Australian_terrier
1216
+ n02096437: Dandie_Dinmont
1217
+ n02096585: Boston_bull
1218
+ n02097047: miniature_schnauzer
1219
+ n02097130: giant_schnauzer
1220
+ n02097209: standard_schnauzer
1221
+ n02097298: Scotch_terrier
1222
+ n02097474: Tibetan_terrier
1223
+ n02097658: silky_terrier
1224
+ n02098105: soft-coated_wheaten_terrier
1225
+ n02098286: West_Highland_white_terrier
1226
+ n02098413: Lhasa
1227
+ n02099267: flat-coated_retriever
1228
+ n02099429: curly-coated_retriever
1229
+ n02099601: golden_retriever
1230
+ n02099712: Labrador_retriever
1231
+ n02099849: Chesapeake_Bay_retriever
1232
+ n02100236: German_short-haired_pointer
1233
+ n02100583: vizsla
1234
+ n02100735: English_setter
1235
+ n02100877: Irish_setter
1236
+ n02101006: Gordon_setter
1237
+ n02101388: Brittany_spaniel
1238
+ n02101556: clumber
1239
+ n02102040: English_springer
1240
+ n02102177: Welsh_springer_spaniel
1241
+ n02102318: cocker_spaniel
1242
+ n02102480: Sussex_spaniel
1243
+ n02102973: Irish_water_spaniel
1244
+ n02104029: kuvasz
1245
+ n02104365: schipperke
1246
+ n02105056: groenendael
1247
+ n02105162: malinois
1248
+ n02105251: briard
1249
+ n02105412: kelpie
1250
+ n02105505: komondor
1251
+ n02105641: Old_English_sheepdog
1252
+ n02105855: Shetland_sheepdog
1253
+ n02106030: collie
1254
+ n02106166: Border_collie
1255
+ n02106382: Bouvier_des_Flandres
1256
+ n02106550: Rottweiler
1257
+ n02106662: German_shepherd
1258
+ n02107142: Doberman
1259
+ n02107312: miniature_pinscher
1260
+ n02107574: Greater_Swiss_Mountain_dog
1261
+ n02107683: Bernese_mountain_dog
1262
+ n02107908: Appenzeller
1263
+ n02108000: EntleBucher
1264
+ n02108089: boxer
1265
+ n02108422: bull_mastiff
1266
+ n02108551: Tibetan_mastiff
1267
+ n02108915: French_bulldog
1268
+ n02109047: Great_Dane
1269
+ n02109525: Saint_Bernard
1270
+ n02109961: Eskimo_dog
1271
+ n02110063: malamute
1272
+ n02110185: Siberian_husky
1273
+ n02110341: dalmatian
1274
+ n02110627: affenpinscher
1275
+ n02110806: basenji
1276
+ n02110958: pug
1277
+ n02111129: Leonberg
1278
+ n02111277: Newfoundland
1279
+ n02111500: Great_Pyrenees
1280
+ n02111889: Samoyed
1281
+ n02112018: Pomeranian
1282
+ n02112137: chow
1283
+ n02112350: keeshond
1284
+ n02112706: Brabancon_griffon
1285
+ n02113023: Pembroke
1286
+ n02113186: Cardigan
1287
+ n02113624: toy_poodle
1288
+ n02113712: miniature_poodle
1289
+ n02113799: standard_poodle
1290
+ n02113978: Mexican_hairless
1291
+ n02114367: timber_wolf
1292
+ n02114548: white_wolf
1293
+ n02114712: red_wolf
1294
+ n02114855: coyote
1295
+ n02115641: dingo
1296
+ n02115913: dhole
1297
+ n02116738: African_hunting_dog
1298
+ n02117135: hyena
1299
+ n02119022: red_fox
1300
+ n02119789: kit_fox
1301
+ n02120079: Arctic_fox
1302
+ n02120505: grey_fox
1303
+ n02123045: tabby
1304
+ n02123159: tiger_cat
1305
+ n02123394: Persian_cat
1306
+ n02123597: Siamese_cat
1307
+ n02124075: Egyptian_cat
1308
+ n02125311: cougar
1309
+ n02127052: lynx
1310
+ n02128385: leopard
1311
+ n02128757: snow_leopard
1312
+ n02128925: jaguar
1313
+ n02129165: lion
1314
+ n02129604: tiger
1315
+ n02130308: cheetah
1316
+ n02132136: brown_bear
1317
+ n02133161: American_black_bear
1318
+ n02134084: ice_bear
1319
+ n02134418: sloth_bear
1320
+ n02137549: mongoose
1321
+ n02138441: meerkat
1322
+ n02165105: tiger_beetle
1323
+ n02165456: ladybug
1324
+ n02167151: ground_beetle
1325
+ n02168699: long-horned_beetle
1326
+ n02169497: leaf_beetle
1327
+ n02172182: dung_beetle
1328
+ n02174001: rhinoceros_beetle
1329
+ n02177972: weevil
1330
+ n02190166: fly
1331
+ n02206856: bee
1332
+ n02219486: ant
1333
+ n02226429: grasshopper
1334
+ n02229544: cricket
1335
+ n02231487: walking_stick
1336
+ n02233338: cockroach
1337
+ n02236044: mantis
1338
+ n02256656: cicada
1339
+ n02259212: leafhopper
1340
+ n02264363: lacewing
1341
+ n02268443: dragonfly
1342
+ n02268853: damselfly
1343
+ n02276258: admiral
1344
+ n02277742: ringlet
1345
+ n02279972: monarch
1346
+ n02280649: cabbage_butterfly
1347
+ n02281406: sulphur_butterfly
1348
+ n02281787: lycaenid
1349
+ n02317335: starfish
1350
+ n02319095: sea_urchin
1351
+ n02321529: sea_cucumber
1352
+ n02325366: wood_rabbit
1353
+ n02326432: hare
1354
+ n02328150: Angora
1355
+ n02342885: hamster
1356
+ n02346627: porcupine
1357
+ n02356798: fox_squirrel
1358
+ n02361337: marmot
1359
+ n02363005: beaver
1360
+ n02364673: guinea_pig
1361
+ n02389026: sorrel
1362
+ n02391049: zebra
1363
+ n02395406: hog
1364
+ n02396427: wild_boar
1365
+ n02397096: warthog
1366
+ n02398521: hippopotamus
1367
+ n02403003: ox
1368
+ n02408429: water_buffalo
1369
+ n02410509: bison
1370
+ n02412080: ram
1371
+ n02415577: bighorn
1372
+ n02417914: ibex
1373
+ n02422106: hartebeest
1374
+ n02422699: impala
1375
+ n02423022: gazelle
1376
+ n02437312: Arabian_camel
1377
+ n02437616: llama
1378
+ n02441942: weasel
1379
+ n02442845: mink
1380
+ n02443114: polecat
1381
+ n02443484: black-footed_ferret
1382
+ n02444819: otter
1383
+ n02445715: skunk
1384
+ n02447366: badger
1385
+ n02454379: armadillo
1386
+ n02457408: three-toed_sloth
1387
+ n02480495: orangutan
1388
+ n02480855: gorilla
1389
+ n02481823: chimpanzee
1390
+ n02483362: gibbon
1391
+ n02483708: siamang
1392
+ n02484975: guenon
1393
+ n02486261: patas
1394
+ n02486410: baboon
1395
+ n02487347: macaque
1396
+ n02488291: langur
1397
+ n02488702: colobus
1398
+ n02489166: proboscis_monkey
1399
+ n02490219: marmoset
1400
+ n02492035: capuchin
1401
+ n02492660: howler_monkey
1402
+ n02493509: titi
1403
+ n02493793: spider_monkey
1404
+ n02494079: squirrel_monkey
1405
+ n02497673: Madagascar_cat
1406
+ n02500267: indri
1407
+ n02504013: Indian_elephant
1408
+ n02504458: African_elephant
1409
+ n02509815: lesser_panda
1410
+ n02510455: giant_panda
1411
+ n02514041: barracouta
1412
+ n02526121: eel
1413
+ n02536864: coho
1414
+ n02606052: rock_beauty
1415
+ n02607072: anemone_fish
1416
+ n02640242: sturgeon
1417
+ n02641379: gar
1418
+ n02643566: lionfish
1419
+ n02655020: puffer
1420
+ n02666196: abacus
1421
+ n02667093: abaya
1422
+ n02669723: academic_gown
1423
+ n02672831: accordion
1424
+ n02676566: acoustic_guitar
1425
+ n02687172: aircraft_carrier
1426
+ n02690373: airliner
1427
+ n02692877: airship
1428
+ n02699494: altar
1429
+ n02701002: ambulance
1430
+ n02704792: amphibian
1431
+ n02708093: analog_clock
1432
+ n02727426: apiary
1433
+ n02730930: apron
1434
+ n02747177: ashcan
1435
+ n02749479: assault_rifle
1436
+ n02769748: backpack
1437
+ n02776631: bakery
1438
+ n02777292: balance_beam
1439
+ n02782093: balloon
1440
+ n02783161: ballpoint
1441
+ n02786058: Band_Aid
1442
+ n02787622: banjo
1443
+ n02788148: bannister
1444
+ n02790996: barbell
1445
+ n02791124: barber_chair
1446
+ n02791270: barbershop
1447
+ n02793495: barn
1448
+ n02794156: barometer
1449
+ n02795169: barrel
1450
+ n02797295: barrow
1451
+ n02799071: baseball
1452
+ n02802426: basketball
1453
+ n02804414: bassinet
1454
+ n02804610: bassoon
1455
+ n02807133: bathing_cap
1456
+ n02808304: bath_towel
1457
+ n02808440: bathtub
1458
+ n02814533: beach_wagon
1459
+ n02814860: beacon
1460
+ n02815834: beaker
1461
+ n02817516: bearskin
1462
+ n02823428: beer_bottle
1463
+ n02823750: beer_glass
1464
+ n02825657: bell_cote
1465
+ n02834397: bib
1466
+ n02835271: bicycle-built-for-two
1467
+ n02837789: bikini
1468
+ n02840245: binder
1469
+ n02841315: binoculars
1470
+ n02843684: birdhouse
1471
+ n02859443: boathouse
1472
+ n02860847: bobsled
1473
+ n02865351: bolo_tie
1474
+ n02869837: bonnet
1475
+ n02870880: bookcase
1476
+ n02871525: bookshop
1477
+ n02877765: bottlecap
1478
+ n02879718: bow
1479
+ n02883205: bow_tie
1480
+ n02892201: brass
1481
+ n02892767: brassiere
1482
+ n02894605: breakwater
1483
+ n02895154: breastplate
1484
+ n02906734: broom
1485
+ n02909870: bucket
1486
+ n02910353: buckle
1487
+ n02916936: bulletproof_vest
1488
+ n02917067: bullet_train
1489
+ n02927161: butcher_shop
1490
+ n02930766: cab
1491
+ n02939185: caldron
1492
+ n02948072: candle
1493
+ n02950826: cannon
1494
+ n02951358: canoe
1495
+ n02951585: can_opener
1496
+ n02963159: cardigan
1497
+ n02965783: car_mirror
1498
+ n02966193: carousel
1499
+ n02966687: carpenter's_kit
1500
+ n02971356: carton
1501
+ n02974003: car_wheel
1502
+ n02977058: cash_machine
1503
+ n02978881: cassette
1504
+ n02979186: cassette_player
1505
+ n02980441: castle
1506
+ n02981792: catamaran
1507
+ n02988304: CD_player
1508
+ n02992211: cello
1509
+ n02992529: cellular_telephone
1510
+ n02999410: chain
1511
+ n03000134: chainlink_fence
1512
+ n03000247: chain_mail
1513
+ n03000684: chain_saw
1514
+ n03014705: chest
1515
+ n03016953: chiffonier
1516
+ n03017168: chime
1517
+ n03018349: china_cabinet
1518
+ n03026506: Christmas_stocking
1519
+ n03028079: church
1520
+ n03032252: cinema
1521
+ n03041632: cleaver
1522
+ n03042490: cliff_dwelling
1523
+ n03045698: cloak
1524
+ n03047690: clog
1525
+ n03062245: cocktail_shaker
1526
+ n03063599: coffee_mug
1527
+ n03063689: coffeepot
1528
+ n03065424: coil
1529
+ n03075370: combination_lock
1530
+ n03085013: computer_keyboard
1531
+ n03089624: confectionery
1532
+ n03095699: container_ship
1533
+ n03100240: convertible
1534
+ n03109150: corkscrew
1535
+ n03110669: cornet
1536
+ n03124043: cowboy_boot
1537
+ n03124170: cowboy_hat
1538
+ n03125729: cradle
1539
+ n03126707: crane_(machine)
1540
+ n03127747: crash_helmet
1541
+ n03127925: crate
1542
+ n03131574: crib
1543
+ n03133878: Crock_Pot
1544
+ n03134739: croquet_ball
1545
+ n03141823: crutch
1546
+ n03146219: cuirass
1547
+ n03160309: dam
1548
+ n03179701: desk
1549
+ n03180011: desktop_computer
1550
+ n03187595: dial_telephone
1551
+ n03188531: diaper
1552
+ n03196217: digital_clock
1553
+ n03197337: digital_watch
1554
+ n03201208: dining_table
1555
+ n03207743: dishrag
1556
+ n03207941: dishwasher
1557
+ n03208938: disk_brake
1558
+ n03216828: dock
1559
+ n03218198: dogsled
1560
+ n03220513: dome
1561
+ n03223299: doormat
1562
+ n03240683: drilling_platform
1563
+ n03249569: drum
1564
+ n03250847: drumstick
1565
+ n03255030: dumbbell
1566
+ n03259280: Dutch_oven
1567
+ n03271574: electric_fan
1568
+ n03272010: electric_guitar
1569
+ n03272562: electric_locomotive
1570
+ n03290653: entertainment_center
1571
+ n03291819: envelope
1572
+ n03297495: espresso_maker
1573
+ n03314780: face_powder
1574
+ n03325584: feather_boa
1575
+ n03337140: file
1576
+ n03344393: fireboat
1577
+ n03345487: fire_engine
1578
+ n03347037: fire_screen
1579
+ n03355925: flagpole
1580
+ n03372029: flute
1581
+ n03376595: folding_chair
1582
+ n03379051: football_helmet
1583
+ n03384352: forklift
1584
+ n03388043: fountain
1585
+ n03388183: fountain_pen
1586
+ n03388549: four-poster
1587
+ n03393912: freight_car
1588
+ n03394916: French_horn
1589
+ n03400231: frying_pan
1590
+ n03404251: fur_coat
1591
+ n03417042: garbage_truck
1592
+ n03424325: gasmask
1593
+ n03425413: gas_pump
1594
+ n03443371: goblet
1595
+ n03444034: go-kart
1596
+ n03445777: golf_ball
1597
+ n03445924: golfcart
1598
+ n03447447: gondola
1599
+ n03447721: gong
1600
+ n03450230: gown
1601
+ n03452741: grand_piano
1602
+ n03457902: greenhouse
1603
+ n03459775: grille
1604
+ n03461385: grocery_store
1605
+ n03467068: guillotine
1606
+ n03476684: hair_slide
1607
+ n03476991: hair_spray
1608
+ n03478589: half_track
1609
+ n03481172: hammer
1610
+ n03482405: hamper
1611
+ n03483316: hand_blower
1612
+ n03485407: hand-held_computer
1613
+ n03485794: handkerchief
1614
+ n03492542: hard_disc
1615
+ n03494278: harmonica
1616
+ n03495258: harp
1617
+ n03496892: harvester
1618
+ n03498962: hatchet
1619
+ n03527444: holster
1620
+ n03529860: home_theater
1621
+ n03530642: honeycomb
1622
+ n03532672: hook
1623
+ n03534580: hoopskirt
1624
+ n03535780: horizontal_bar
1625
+ n03538406: horse_cart
1626
+ n03544143: hourglass
1627
+ n03584254: iPod
1628
+ n03584829: iron
1629
+ n03590841: jack-o'-lantern
1630
+ n03594734: jean
1631
+ n03594945: jeep
1632
+ n03595614: jersey
1633
+ n03598930: jigsaw_puzzle
1634
+ n03599486: jinrikisha
1635
+ n03602883: joystick
1636
+ n03617480: kimono
1637
+ n03623198: knee_pad
1638
+ n03627232: knot
1639
+ n03630383: lab_coat
1640
+ n03633091: ladle
1641
+ n03637318: lampshade
1642
+ n03642806: laptop
1643
+ n03649909: lawn_mower
1644
+ n03657121: lens_cap
1645
+ n03658185: letter_opener
1646
+ n03661043: library
1647
+ n03662601: lifeboat
1648
+ n03666591: lighter
1649
+ n03670208: limousine
1650
+ n03673027: liner
1651
+ n03676483: lipstick
1652
+ n03680355: Loafer
1653
+ n03690938: lotion
1654
+ n03691459: loudspeaker
1655
+ n03692522: loupe
1656
+ n03697007: lumbermill
1657
+ n03706229: magnetic_compass
1658
+ n03709823: mailbag
1659
+ n03710193: mailbox
1660
+ n03710637: maillot_(tights)
1661
+ n03710721: maillot_(tank_suit)
1662
+ n03717622: manhole_cover
1663
+ n03720891: maraca
1664
+ n03721384: marimba
1665
+ n03724870: mask
1666
+ n03729826: matchstick
1667
+ n03733131: maypole
1668
+ n03733281: maze
1669
+ n03733805: measuring_cup
1670
+ n03742115: medicine_chest
1671
+ n03743016: megalith
1672
+ n03759954: microphone
1673
+ n03761084: microwave
1674
+ n03763968: military_uniform
1675
+ n03764736: milk_can
1676
+ n03769881: minibus
1677
+ n03770439: miniskirt
1678
+ n03770679: minivan
1679
+ n03773504: missile
1680
+ n03775071: mitten
1681
+ n03775546: mixing_bowl
1682
+ n03776460: mobile_home
1683
+ n03777568: Model_T
1684
+ n03777754: modem
1685
+ n03781244: monastery
1686
+ n03782006: monitor
1687
+ n03785016: moped
1688
+ n03786901: mortar
1689
+ n03787032: mortarboard
1690
+ n03788195: mosque
1691
+ n03788365: mosquito_net
1692
+ n03791053: motor_scooter
1693
+ n03792782: mountain_bike
1694
+ n03792972: mountain_tent
1695
+ n03793489: mouse
1696
+ n03794056: mousetrap
1697
+ n03796401: moving_van
1698
+ n03803284: muzzle
1699
+ n03804744: nail
1700
+ n03814639: neck_brace
1701
+ n03814906: necklace
1702
+ n03825788: nipple
1703
+ n03832673: notebook
1704
+ n03837869: obelisk
1705
+ n03838899: oboe
1706
+ n03840681: ocarina
1707
+ n03841143: odometer
1708
+ n03843555: oil_filter
1709
+ n03854065: organ
1710
+ n03857828: oscilloscope
1711
+ n03866082: overskirt
1712
+ n03868242: oxcart
1713
+ n03868863: oxygen_mask
1714
+ n03871628: packet
1715
+ n03873416: paddle
1716
+ n03874293: paddlewheel
1717
+ n03874599: padlock
1718
+ n03876231: paintbrush
1719
+ n03877472: pajama
1720
+ n03877845: palace
1721
+ n03884397: panpipe
1722
+ n03887697: paper_towel
1723
+ n03888257: parachute
1724
+ n03888605: parallel_bars
1725
+ n03891251: park_bench
1726
+ n03891332: parking_meter
1727
+ n03895866: passenger_car
1728
+ n03899768: patio
1729
+ n03902125: pay-phone
1730
+ n03903868: pedestal
1731
+ n03908618: pencil_box
1732
+ n03908714: pencil_sharpener
1733
+ n03916031: perfume
1734
+ n03920288: Petri_dish
1735
+ n03924679: photocopier
1736
+ n03929660: pick
1737
+ n03929855: pickelhaube
1738
+ n03930313: picket_fence
1739
+ n03930630: pickup
1740
+ n03933933: pier
1741
+ n03935335: piggy_bank
1742
+ n03937543: pill_bottle
1743
+ n03938244: pillow
1744
+ n03942813: ping-pong_ball
1745
+ n03944341: pinwheel
1746
+ n03947888: pirate
1747
+ n03950228: pitcher
1748
+ n03954731: plane
1749
+ n03956157: planetarium
1750
+ n03958227: plastic_bag
1751
+ n03961711: plate_rack
1752
+ n03967562: plow
1753
+ n03970156: plunger
1754
+ n03976467: Polaroid_camera
1755
+ n03976657: pole
1756
+ n03977966: police_van
1757
+ n03980874: poncho
1758
+ n03982430: pool_table
1759
+ n03983396: pop_bottle
1760
+ n03991062: pot
1761
+ n03992509: potter's_wheel
1762
+ n03995372: power_drill
1763
+ n03998194: prayer_rug
1764
+ n04004767: printer
1765
+ n04005630: prison
1766
+ n04008634: projectile
1767
+ n04009552: projector
1768
+ n04019541: puck
1769
+ n04023962: punching_bag
1770
+ n04026417: purse
1771
+ n04033901: quill
1772
+ n04033995: quilt
1773
+ n04037443: racer
1774
+ n04039381: racket
1775
+ n04040759: radiator
1776
+ n04041544: radio
1777
+ n04044716: radio_telescope
1778
+ n04049303: rain_barrel
1779
+ n04065272: recreational_vehicle
1780
+ n04067472: reel
1781
+ n04069434: reflex_camera
1782
+ n04070727: refrigerator
1783
+ n04074963: remote_control
1784
+ n04081281: restaurant
1785
+ n04086273: revolver
1786
+ n04090263: rifle
1787
+ n04099969: rocking_chair
1788
+ n04111531: rotisserie
1789
+ n04116512: rubber_eraser
1790
+ n04118538: rugby_ball
1791
+ n04118776: rule
1792
+ n04120489: running_shoe
1793
+ n04125021: safe
1794
+ n04127249: safety_pin
1795
+ n04131690: saltshaker
1796
+ n04133789: sandal
1797
+ n04136333: sarong
1798
+ n04141076: sax
1799
+ n04141327: scabbard
1800
+ n04141975: scale
1801
+ n04146614: school_bus
1802
+ n04147183: schooner
1803
+ n04149813: scoreboard
1804
+ n04152593: screen
1805
+ n04153751: screw
1806
+ n04154565: screwdriver
1807
+ n04162706: seat_belt
1808
+ n04179913: sewing_machine
1809
+ n04192698: shield
1810
+ n04200800: shoe_shop
1811
+ n04201297: shoji
1812
+ n04204238: shopping_basket
1813
+ n04204347: shopping_cart
1814
+ n04208210: shovel
1815
+ n04209133: shower_cap
1816
+ n04209239: shower_curtain
1817
+ n04228054: ski
1818
+ n04229816: ski_mask
1819
+ n04235860: sleeping_bag
1820
+ n04238763: slide_rule
1821
+ n04239074: sliding_door
1822
+ n04243546: slot
1823
+ n04251144: snorkel
1824
+ n04252077: snowmobile
1825
+ n04252225: snowplow
1826
+ n04254120: soap_dispenser
1827
+ n04254680: soccer_ball
1828
+ n04254777: sock
1829
+ n04258138: solar_dish
1830
+ n04259630: sombrero
1831
+ n04263257: soup_bowl
1832
+ n04264628: space_bar
1833
+ n04265275: space_heater
1834
+ n04266014: space_shuttle
1835
+ n04270147: spatula
1836
+ n04273569: speedboat
1837
+ n04275548: spider_web
1838
+ n04277352: spindle
1839
+ n04285008: sports_car
1840
+ n04286575: spotlight
1841
+ n04296562: stage
1842
+ n04310018: steam_locomotive
1843
+ n04311004: steel_arch_bridge
1844
+ n04311174: steel_drum
1845
+ n04317175: stethoscope
1846
+ n04325704: stole
1847
+ n04326547: stone_wall
1848
+ n04328186: stopwatch
1849
+ n04330267: stove
1850
+ n04332243: strainer
1851
+ n04335435: streetcar
1852
+ n04336792: stretcher
1853
+ n04344873: studio_couch
1854
+ n04346328: stupa
1855
+ n04347754: submarine
1856
+ n04350905: suit
1857
+ n04355338: sundial
1858
+ n04355933: sunglass
1859
+ n04356056: sunglasses
1860
+ n04357314: sunscreen
1861
+ n04366367: suspension_bridge
1862
+ n04367480: swab
1863
+ n04370456: sweatshirt
1864
+ n04371430: swimming_trunks
1865
+ n04371774: swing
1866
+ n04372370: switch
1867
+ n04376876: syringe
1868
+ n04380533: table_lamp
1869
+ n04389033: tank
1870
+ n04392985: tape_player
1871
+ n04398044: teapot
1872
+ n04399382: teddy
1873
+ n04404412: television
1874
+ n04409515: tennis_ball
1875
+ n04417672: thatch
1876
+ n04418357: theater_curtain
1877
+ n04423845: thimble
1878
+ n04428191: thresher
1879
+ n04429376: throne
1880
+ n04435653: tile_roof
1881
+ n04442312: toaster
1882
+ n04443257: tobacco_shop
1883
+ n04447861: toilet_seat
1884
+ n04456115: torch
1885
+ n04458633: totem_pole
1886
+ n04461696: tow_truck
1887
+ n04462240: toyshop
1888
+ n04465501: tractor
1889
+ n04467665: trailer_truck
1890
+ n04476259: tray
1891
+ n04479046: trench_coat
1892
+ n04482393: tricycle
1893
+ n04483307: trimaran
1894
+ n04485082: tripod
1895
+ n04486054: triumphal_arch
1896
+ n04487081: trolleybus
1897
+ n04487394: trombone
1898
+ n04493381: tub
1899
+ n04501370: turnstile
1900
+ n04505470: typewriter_keyboard
1901
+ n04507155: umbrella
1902
+ n04509417: unicycle
1903
+ n04515003: upright
1904
+ n04517823: vacuum
1905
+ n04522168: vase
1906
+ n04523525: vault
1907
+ n04525038: velvet
1908
+ n04525305: vending_machine
1909
+ n04532106: vestment
1910
+ n04532670: viaduct
1911
+ n04536866: violin
1912
+ n04540053: volleyball
1913
+ n04542943: waffle_iron
1914
+ n04548280: wall_clock
1915
+ n04548362: wallet
1916
+ n04550184: wardrobe
1917
+ n04552348: warplane
1918
+ n04553703: washbasin
1919
+ n04554684: washer
1920
+ n04557648: water_bottle
1921
+ n04560804: water_jug
1922
+ n04562935: water_tower
1923
+ n04579145: whiskey_jug
1924
+ n04579432: whistle
1925
+ n04584207: wig
1926
+ n04589890: window_screen
1927
+ n04590129: window_shade
1928
+ n04591157: Windsor_tie
1929
+ n04591713: wine_bottle
1930
+ n04592741: wing
1931
+ n04596742: wok
1932
+ n04597913: wooden_spoon
1933
+ n04599235: wool
1934
+ n04604644: worm_fence
1935
+ n04606251: wreck
1936
+ n04612504: yawl
1937
+ n04613696: yurt
1938
+ n06359193: web_site
1939
+ n06596364: comic_book
1940
+ n06785654: crossword_puzzle
1941
+ n06794110: street_sign
1942
+ n06874185: traffic_light
1943
+ n07248320: book_jacket
1944
+ n07565083: menu
1945
+ n07579787: plate
1946
+ n07583066: guacamole
1947
+ n07584110: consomme
1948
+ n07590611: hot_pot
1949
+ n07613480: trifle
1950
+ n07614500: ice_cream
1951
+ n07615774: ice_lolly
1952
+ n07684084: French_loaf
1953
+ n07693725: bagel
1954
+ n07695742: pretzel
1955
+ n07697313: cheeseburger
1956
+ n07697537: hotdog
1957
+ n07711569: mashed_potato
1958
+ n07714571: head_cabbage
1959
+ n07714990: broccoli
1960
+ n07715103: cauliflower
1961
+ n07716358: zucchini
1962
+ n07716906: spaghetti_squash
1963
+ n07717410: acorn_squash
1964
+ n07717556: butternut_squash
1965
+ n07718472: cucumber
1966
+ n07718747: artichoke
1967
+ n07720875: bell_pepper
1968
+ n07730033: cardoon
1969
+ n07734744: mushroom
1970
+ n07742313: Granny_Smith
1971
+ n07745940: strawberry
1972
+ n07747607: orange
1973
+ n07749582: lemon
1974
+ n07753113: fig
1975
+ n07753275: pineapple
1976
+ n07753592: banana
1977
+ n07754684: jackfruit
1978
+ n07760859: custard_apple
1979
+ n07768694: pomegranate
1980
+ n07802026: hay
1981
+ n07831146: carbonara
1982
+ n07836838: chocolate_sauce
1983
+ n07860988: dough
1984
+ n07871810: meat_loaf
1985
+ n07873807: pizza
1986
+ n07875152: potpie
1987
+ n07880968: burrito
1988
+ n07892512: red_wine
1989
+ n07920052: espresso
1990
+ n07930864: cup
1991
+ n07932039: eggnog
1992
+ n09193705: alp
1993
+ n09229709: bubble
1994
+ n09246464: cliff
1995
+ n09256479: coral_reef
1996
+ n09288635: geyser
1997
+ n09332890: lakeside
1998
+ n09399592: promontory
1999
+ n09421951: sandbar
2000
+ n09428293: seashore
2001
+ n09468604: valley
2002
+ n09472597: volcano
2003
+ n09835506: ballplayer
2004
+ n10148035: groom
2005
+ n10565667: scuba_diver
2006
+ n11879895: rapeseed
2007
+ n11939491: daisy
2008
+ n12057211: yellow_lady's_slipper
2009
+ n12144580: corn
2010
+ n12267677: acorn
2011
+ n12620546: hip
2012
+ n12768682: buckeye
2013
+ n12985857: coral_fungus
2014
+ n12998815: agaric
2015
+ n13037406: gyromitra
2016
+ n13040303: stinkhorn
2017
+ n13044778: earthstar
2018
+ n13052670: hen-of-the-woods
2019
+ n13054560: bolete
2020
+ n13133613: ear
2021
+ n15075141: toilet_tissue
2022
+
2023
+
2024
+ # Download script/URL (optional)
2025
+ download: yolo/data/scripts/get_imagenet.sh
ultralytics/datasets/Objects365.yaml ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Objects365 dataset https://www.objects365.org/ by Megvii
3
+ # Example usage: yolo train data=Objects365.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
13
+ val: images/val # val images (relative to 'path') 80000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: Person
19
+ 1: Sneakers
20
+ 2: Chair
21
+ 3: Other Shoes
22
+ 4: Hat
23
+ 5: Car
24
+ 6: Lamp
25
+ 7: Glasses
26
+ 8: Bottle
27
+ 9: Desk
28
+ 10: Cup
29
+ 11: Street Lights
30
+ 12: Cabinet/shelf
31
+ 13: Handbag/Satchel
32
+ 14: Bracelet
33
+ 15: Plate
34
+ 16: Picture/Frame
35
+ 17: Helmet
36
+ 18: Book
37
+ 19: Gloves
38
+ 20: Storage box
39
+ 21: Boat
40
+ 22: Leather Shoes
41
+ 23: Flower
42
+ 24: Bench
43
+ 25: Potted Plant
44
+ 26: Bowl/Basin
45
+ 27: Flag
46
+ 28: Pillow
47
+ 29: Boots
48
+ 30: Vase
49
+ 31: Microphone
50
+ 32: Necklace
51
+ 33: Ring
52
+ 34: SUV
53
+ 35: Wine Glass
54
+ 36: Belt
55
+ 37: Monitor/TV
56
+ 38: Backpack
57
+ 39: Umbrella
58
+ 40: Traffic Light
59
+ 41: Speaker
60
+ 42: Watch
61
+ 43: Tie
62
+ 44: Trash bin Can
63
+ 45: Slippers
64
+ 46: Bicycle
65
+ 47: Stool
66
+ 48: Barrel/bucket
67
+ 49: Van
68
+ 50: Couch
69
+ 51: Sandals
70
+ 52: Basket
71
+ 53: Drum
72
+ 54: Pen/Pencil
73
+ 55: Bus
74
+ 56: Wild Bird
75
+ 57: High Heels
76
+ 58: Motorcycle
77
+ 59: Guitar
78
+ 60: Carpet
79
+ 61: Cell Phone
80
+ 62: Bread
81
+ 63: Camera
82
+ 64: Canned
83
+ 65: Truck
84
+ 66: Traffic cone
85
+ 67: Cymbal
86
+ 68: Lifesaver
87
+ 69: Towel
88
+ 70: Stuffed Toy
89
+ 71: Candle
90
+ 72: Sailboat
91
+ 73: Laptop
92
+ 74: Awning
93
+ 75: Bed
94
+ 76: Faucet
95
+ 77: Tent
96
+ 78: Horse
97
+ 79: Mirror
98
+ 80: Power outlet
99
+ 81: Sink
100
+ 82: Apple
101
+ 83: Air Conditioner
102
+ 84: Knife
103
+ 85: Hockey Stick
104
+ 86: Paddle
105
+ 87: Pickup Truck
106
+ 88: Fork
107
+ 89: Traffic Sign
108
+ 90: Balloon
109
+ 91: Tripod
110
+ 92: Dog
111
+ 93: Spoon
112
+ 94: Clock
113
+ 95: Pot
114
+ 96: Cow
115
+ 97: Cake
116
+ 98: Dinning Table
117
+ 99: Sheep
118
+ 100: Hanger
119
+ 101: Blackboard/Whiteboard
120
+ 102: Napkin
121
+ 103: Other Fish
122
+ 104: Orange/Tangerine
123
+ 105: Toiletry
124
+ 106: Keyboard
125
+ 107: Tomato
126
+ 108: Lantern
127
+ 109: Machinery Vehicle
128
+ 110: Fan
129
+ 111: Green Vegetables
130
+ 112: Banana
131
+ 113: Baseball Glove
132
+ 114: Airplane
133
+ 115: Mouse
134
+ 116: Train
135
+ 117: Pumpkin
136
+ 118: Soccer
137
+ 119: Skiboard
138
+ 120: Luggage
139
+ 121: Nightstand
140
+ 122: Tea pot
141
+ 123: Telephone
142
+ 124: Trolley
143
+ 125: Head Phone
144
+ 126: Sports Car
145
+ 127: Stop Sign
146
+ 128: Dessert
147
+ 129: Scooter
148
+ 130: Stroller
149
+ 131: Crane
150
+ 132: Remote
151
+ 133: Refrigerator
152
+ 134: Oven
153
+ 135: Lemon
154
+ 136: Duck
155
+ 137: Baseball Bat
156
+ 138: Surveillance Camera
157
+ 139: Cat
158
+ 140: Jug
159
+ 141: Broccoli
160
+ 142: Piano
161
+ 143: Pizza
162
+ 144: Elephant
163
+ 145: Skateboard
164
+ 146: Surfboard
165
+ 147: Gun
166
+ 148: Skating and Skiing shoes
167
+ 149: Gas stove
168
+ 150: Donut
169
+ 151: Bow Tie
170
+ 152: Carrot
171
+ 153: Toilet
172
+ 154: Kite
173
+ 155: Strawberry
174
+ 156: Other Balls
175
+ 157: Shovel
176
+ 158: Pepper
177
+ 159: Computer Box
178
+ 160: Toilet Paper
179
+ 161: Cleaning Products
180
+ 162: Chopsticks
181
+ 163: Microwave
182
+ 164: Pigeon
183
+ 165: Baseball
184
+ 166: Cutting/chopping Board
185
+ 167: Coffee Table
186
+ 168: Side Table
187
+ 169: Scissors
188
+ 170: Marker
189
+ 171: Pie
190
+ 172: Ladder
191
+ 173: Snowboard
192
+ 174: Cookies
193
+ 175: Radiator
194
+ 176: Fire Hydrant
195
+ 177: Basketball
196
+ 178: Zebra
197
+ 179: Grape
198
+ 180: Giraffe
199
+ 181: Potato
200
+ 182: Sausage
201
+ 183: Tricycle
202
+ 184: Violin
203
+ 185: Egg
204
+ 186: Fire Extinguisher
205
+ 187: Candy
206
+ 188: Fire Truck
207
+ 189: Billiards
208
+ 190: Converter
209
+ 191: Bathtub
210
+ 192: Wheelchair
211
+ 193: Golf Club
212
+ 194: Briefcase
213
+ 195: Cucumber
214
+ 196: Cigar/Cigarette
215
+ 197: Paint Brush
216
+ 198: Pear
217
+ 199: Heavy Truck
218
+ 200: Hamburger
219
+ 201: Extractor
220
+ 202: Extension Cord
221
+ 203: Tong
222
+ 204: Tennis Racket
223
+ 205: Folder
224
+ 206: American Football
225
+ 207: earphone
226
+ 208: Mask
227
+ 209: Kettle
228
+ 210: Tennis
229
+ 211: Ship
230
+ 212: Swing
231
+ 213: Coffee Machine
232
+ 214: Slide
233
+ 215: Carriage
234
+ 216: Onion
235
+ 217: Green beans
236
+ 218: Projector
237
+ 219: Frisbee
238
+ 220: Washing Machine/Drying Machine
239
+ 221: Chicken
240
+ 222: Printer
241
+ 223: Watermelon
242
+ 224: Saxophone
243
+ 225: Tissue
244
+ 226: Toothbrush
245
+ 227: Ice cream
246
+ 228: Hot-air balloon
247
+ 229: Cello
248
+ 230: French Fries
249
+ 231: Scale
250
+ 232: Trophy
251
+ 233: Cabbage
252
+ 234: Hot dog
253
+ 235: Blender
254
+ 236: Peach
255
+ 237: Rice
256
+ 238: Wallet/Purse
257
+ 239: Volleyball
258
+ 240: Deer
259
+ 241: Goose
260
+ 242: Tape
261
+ 243: Tablet
262
+ 244: Cosmetics
263
+ 245: Trumpet
264
+ 246: Pineapple
265
+ 247: Golf Ball
266
+ 248: Ambulance
267
+ 249: Parking meter
268
+ 250: Mango
269
+ 251: Key
270
+ 252: Hurdle
271
+ 253: Fishing Rod
272
+ 254: Medal
273
+ 255: Flute
274
+ 256: Brush
275
+ 257: Penguin
276
+ 258: Megaphone
277
+ 259: Corn
278
+ 260: Lettuce
279
+ 261: Garlic
280
+ 262: Swan
281
+ 263: Helicopter
282
+ 264: Green Onion
283
+ 265: Sandwich
284
+ 266: Nuts
285
+ 267: Speed Limit Sign
286
+ 268: Induction Cooker
287
+ 269: Broom
288
+ 270: Trombone
289
+ 271: Plum
290
+ 272: Rickshaw
291
+ 273: Goldfish
292
+ 274: Kiwi fruit
293
+ 275: Router/modem
294
+ 276: Poker Card
295
+ 277: Toaster
296
+ 278: Shrimp
297
+ 279: Sushi
298
+ 280: Cheese
299
+ 281: Notepaper
300
+ 282: Cherry
301
+ 283: Pliers
302
+ 284: CD
303
+ 285: Pasta
304
+ 286: Hammer
305
+ 287: Cue
306
+ 288: Avocado
307
+ 289: Hamimelon
308
+ 290: Flask
309
+ 291: Mushroom
310
+ 292: Screwdriver
311
+ 293: Soap
312
+ 294: Recorder
313
+ 295: Bear
314
+ 296: Eggplant
315
+ 297: Board Eraser
316
+ 298: Coconut
317
+ 299: Tape Measure/Ruler
318
+ 300: Pig
319
+ 301: Showerhead
320
+ 302: Globe
321
+ 303: Chips
322
+ 304: Steak
323
+ 305: Crosswalk Sign
324
+ 306: Stapler
325
+ 307: Camel
326
+ 308: Formula 1
327
+ 309: Pomegranate
328
+ 310: Dishwasher
329
+ 311: Crab
330
+ 312: Hoverboard
331
+ 313: Meat ball
332
+ 314: Rice Cooker
333
+ 315: Tuba
334
+ 316: Calculator
335
+ 317: Papaya
336
+ 318: Antelope
337
+ 319: Parrot
338
+ 320: Seal
339
+ 321: Butterfly
340
+ 322: Dumbbell
341
+ 323: Donkey
342
+ 324: Lion
343
+ 325: Urinal
344
+ 326: Dolphin
345
+ 327: Electric Drill
346
+ 328: Hair Dryer
347
+ 329: Egg tart
348
+ 330: Jellyfish
349
+ 331: Treadmill
350
+ 332: Lighter
351
+ 333: Grapefruit
352
+ 334: Game board
353
+ 335: Mop
354
+ 336: Radish
355
+ 337: Baozi
356
+ 338: Target
357
+ 339: French
358
+ 340: Spring Rolls
359
+ 341: Monkey
360
+ 342: Rabbit
361
+ 343: Pencil Case
362
+ 344: Yak
363
+ 345: Red Cabbage
364
+ 346: Binoculars
365
+ 347: Asparagus
366
+ 348: Barbell
367
+ 349: Scallop
368
+ 350: Noddles
369
+ 351: Comb
370
+ 352: Dumpling
371
+ 353: Oyster
372
+ 354: Table Tennis paddle
373
+ 355: Cosmetics Brush/Eyeliner Pencil
374
+ 356: Chainsaw
375
+ 357: Eraser
376
+ 358: Lobster
377
+ 359: Durian
378
+ 360: Okra
379
+ 361: Lipstick
380
+ 362: Cosmetics Mirror
381
+ 363: Curling
382
+ 364: Table Tennis
383
+
384
+
385
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
386
+ download: |
387
+ from tqdm import tqdm
388
+
389
+ from ultralytics.yolo.utils.checks import check_requirements
390
+ from ultralytics.yolo.utils.downloads import download
391
+ from ultralytics.yolo.utils.ops import xyxy2xywhn
392
+
393
+ import numpy as np
394
+ from pathlib import Path
395
+
396
+ check_requirements(('pycocotools>=2.0',))
397
+ from pycocotools.coco import COCO
398
+
399
+ # Make Directories
400
+ dir = Path(yaml['path']) # dataset root dir
401
+ for p in 'images', 'labels':
402
+ (dir / p).mkdir(parents=True, exist_ok=True)
403
+ for q in 'train', 'val':
404
+ (dir / p / q).mkdir(parents=True, exist_ok=True)
405
+
406
+ # Train, Val Splits
407
+ for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
408
+ print(f"Processing {split} in {patches} patches ...")
409
+ images, labels = dir / 'images' / split, dir / 'labels' / split
410
+
411
+ # Download
412
+ url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
413
+ if split == 'train':
414
+ download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json
415
+ download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
416
+ elif split == 'val':
417
+ download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json
418
+ download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
419
+ download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)
420
+
421
+ # Move
422
+ for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
423
+ f.rename(images / f.name) # move to /images/{split}
424
+
425
+ # Labels
426
+ coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
427
+ names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
428
+ for cid, cat in enumerate(names):
429
+ catIds = coco.getCatIds(catNms=[cat])
430
+ imgIds = coco.getImgIds(catIds=catIds)
431
+ for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
432
+ width, height = im["width"], im["height"]
433
+ path = Path(im["file_name"]) # image filename
434
+ try:
435
+ with open(labels / path.with_suffix('.txt').name, 'a') as file:
436
+ annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
437
+ for a in coco.loadAnns(annIds):
438
+ x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
439
+ xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
440
+ x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
441
+ file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
442
+ except Exception as e:
443
+ print(e)
ultralytics/datasets/SKU-110K.yaml ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
+ # Example usage: yolo train data=SKU-110K.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── SKU-110K ← downloads here (13.6 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: object
19
+
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ import shutil
24
+ from pathlib import Path
25
+
26
+ import numpy as np
27
+ import pandas as pd
28
+ from tqdm import tqdm
29
+
30
+ from ultralytics.yolo.utils.downloads import download
31
+ from ultralytics.yolo.utils.ops import xyxy2xywh
32
+
33
+ # Download
34
+ dir = Path(yaml['path']) # dataset root dir
35
+ parent = Path(dir.parent) # download dir
36
+ urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
37
+ download(urls, dir=parent)
38
+
39
+ # Rename directories
40
+ if dir.exists():
41
+ shutil.rmtree(dir)
42
+ (parent / 'SKU110K_fixed').rename(dir) # rename dir
43
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
44
+
45
+ # Convert labels
46
+ names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
47
+ for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
48
+ x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
49
+ images, unique_images = x[:, 0], np.unique(x[:, 0])
50
+ with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
51
+ f.writelines(f'./images/{s}\n' for s in unique_images)
52
+ for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
53
+ cls = 0 # single-class dataset
54
+ with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
55
+ for r in x[images == im]:
56
+ w, h = r[6], r[7] # image width, height
57
+ xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
58
+ f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
ultralytics/datasets/VOC.yaml ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
+ # Example usage: yolo train data=VOC.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── VOC ← downloads here (2.8 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VOC
12
+ train: # train images (relative to 'path') 16551 images
13
+ - images/train2012
14
+ - images/train2007
15
+ - images/val2012
16
+ - images/val2007
17
+ val: # val images (relative to 'path') 4952 images
18
+ - images/test2007
19
+ test: # test images (optional)
20
+ - images/test2007
21
+
22
+ # Classes
23
+ names:
24
+ 0: aeroplane
25
+ 1: bicycle
26
+ 2: bird
27
+ 3: boat
28
+ 4: bottle
29
+ 5: bus
30
+ 6: car
31
+ 7: cat
32
+ 8: chair
33
+ 9: cow
34
+ 10: diningtable
35
+ 11: dog
36
+ 12: horse
37
+ 13: motorbike
38
+ 14: person
39
+ 15: pottedplant
40
+ 16: sheep
41
+ 17: sofa
42
+ 18: train
43
+ 19: tvmonitor
44
+
45
+
46
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
47
+ download: |
48
+ import xml.etree.ElementTree as ET
49
+
50
+ from tqdm import tqdm
51
+ from ultralytics.yolo.utils.downloads import download
52
+ from pathlib import Path
53
+
54
+ def convert_label(path, lb_path, year, image_id):
55
+ def convert_box(size, box):
56
+ dw, dh = 1. / size[0], 1. / size[1]
57
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
58
+ return x * dw, y * dh, w * dw, h * dh
59
+
60
+ in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
61
+ out_file = open(lb_path, 'w')
62
+ tree = ET.parse(in_file)
63
+ root = tree.getroot()
64
+ size = root.find('size')
65
+ w = int(size.find('width').text)
66
+ h = int(size.find('height').text)
67
+
68
+ names = list(yaml['names'].values()) # names list
69
+ for obj in root.iter('object'):
70
+ cls = obj.find('name').text
71
+ if cls in names and int(obj.find('difficult').text) != 1:
72
+ xmlbox = obj.find('bndbox')
73
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
74
+ cls_id = names.index(cls) # class id
75
+ out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
76
+
77
+
78
+ # Download
79
+ dir = Path(yaml['path']) # dataset root dir
80
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
81
+ urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
82
+ f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
83
+ f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
84
+ download(urls, dir=dir / 'images', curl=True, threads=3)
85
+
86
+ # Convert
87
+ path = dir / 'images/VOCdevkit'
88
+ for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
89
+ imgs_path = dir / 'images' / f'{image_set}{year}'
90
+ lbs_path = dir / 'labels' / f'{image_set}{year}'
91
+ imgs_path.mkdir(exist_ok=True, parents=True)
92
+ lbs_path.mkdir(exist_ok=True, parents=True)
93
+
94
+ with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
95
+ image_ids = f.read().strip().split()
96
+ for id in tqdm(image_ids, desc=f'{image_set}{year}'):
97
+ f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
98
+ lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
99
+ f.rename(imgs_path / f.name) # move image
100
+ convert_label(path, lb_path, year, id) # convert labels to YOLO format
ultralytics/datasets/VisDrone.yaml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
+ # Example usage: yolo train data=VisDrone.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── VisDrone ← downloads here (2.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15
+
16
+ # Classes
17
+ names:
18
+ 0: pedestrian
19
+ 1: people
20
+ 2: bicycle
21
+ 3: car
22
+ 4: van
23
+ 5: truck
24
+ 6: tricycle
25
+ 7: awning-tricycle
26
+ 8: bus
27
+ 9: motor
28
+
29
+
30
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
31
+ download: |
32
+ import os
33
+ from pathlib import Path
34
+
35
+ from ultralytics.yolo.utils.downloads import download
36
+
37
+ def visdrone2yolo(dir):
38
+ from PIL import Image
39
+ from tqdm import tqdm
40
+
41
+ def convert_box(size, box):
42
+ # Convert VisDrone box to YOLO xywh box
43
+ dw = 1. / size[0]
44
+ dh = 1. / size[1]
45
+ return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
46
+
47
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
48
+ pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
49
+ for f in pbar:
50
+ img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
51
+ lines = []
52
+ with open(f, 'r') as file: # read annotation.txt
53
+ for row in [x.split(',') for x in file.read().strip().splitlines()]:
54
+ if row[4] == '0': # VisDrone 'ignored regions' class 0
55
+ continue
56
+ cls = int(row[5]) - 1
57
+ box = convert_box(img_size, tuple(map(int, row[:4])))
58
+ lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
59
+ with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:
60
+ fl.writelines(lines) # write label.txt
61
+
62
+
63
+ # Download
64
+ dir = Path(yaml['path']) # dataset root dir
65
+ urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
66
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
67
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
68
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
69
+ download(urls, dir=dir, curl=True, threads=4)
70
+
71
+ # Convert
72
+ for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
73
+ visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
ultralytics/datasets/coco-pose.yaml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO 2017 dataset http://cocodataset.org by Microsoft
3
+ # Example usage: yolo train data=coco-pose.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco-pose ← downloads here (20.1 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco-pose # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15
+
16
+ # Keypoints
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
19
+
20
+ # Classes
21
+ names:
22
+ 0: person
23
+
24
+ # Download script/URL (optional)
25
+ download: |
26
+ from ultralytics.yolo.utils.downloads import download
27
+ from pathlib import Path
28
+
29
+ # Download labels
30
+ dir = Path(yaml['path']) # dataset root dir
31
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
32
+ urls = [url + 'coco2017labels-pose.zip'] # labels
33
+ download(urls, dir=dir.parent)
34
+ # Download data
35
+ urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
36
+ 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
37
+ 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
38
+ download(urls, dir=dir / 'images', threads=3)
ultralytics/datasets/coco.yaml ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO 2017 dataset http://cocodataset.org by Microsoft
3
+ # Example usage: yolo train data=coco.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco ← downloads here (20.1 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: |
102
+ from ultralytics.yolo.utils.downloads import download
103
+ from pathlib import Path
104
+
105
+ # Download labels
106
+ segments = True # segment or box labels
107
+ dir = Path(yaml['path']) # dataset root dir
108
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
109
+ urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
110
+ download(urls, dir=dir.parent)
111
+ # Download data
112
+ urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
113
+ 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
114
+ 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
115
+ download(urls, dir=dir / 'images', threads=3)
ultralytics/datasets/coco128-seg.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: yolo train data=coco128.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco128-seg ← downloads here (7 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco128-seg # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco128-seg.zip
ultralytics/datasets/coco128.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: yolo train data=coco128.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco128 ← downloads here (7 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco128 # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco128.zip
ultralytics/datasets/coco8-pose.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
3
+ # Example usage: yolo train data=coco8-pose.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco8-pose ← downloads here (1 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco8-pose # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
15
+
16
+ # Keypoints
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
19
+
20
+ # Classes
21
+ names:
22
+ 0: person
23
+
24
+ # Download script/URL (optional)
25
+ download: https://ultralytics.com/assets/coco8-pose.zip
ultralytics/datasets/coco8-seg.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
3
+ # Example usage: yolo train data=coco8-seg.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco8-seg ← downloads here (1 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco8-seg # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco8-seg.zip
ultralytics/datasets/coco8.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
3
+ # Example usage: yolo train data=coco8.yaml
4
+ # parent
5
+ # ├── ultralytics
6
+ # └── datasets
7
+ # └── coco8 ← downloads here (1 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco8 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ names:
18
+ 0: person
19
+ 1: bicycle
20
+ 2: car
21
+ 3: motorcycle
22
+ 4: airplane
23
+ 5: bus
24
+ 6: train
25
+ 7: truck
26
+ 8: boat
27
+ 9: traffic light
28
+ 10: fire hydrant
29
+ 11: stop sign
30
+ 12: parking meter
31
+ 13: bench
32
+ 14: bird
33
+ 15: cat
34
+ 16: dog
35
+ 17: horse
36
+ 18: sheep
37
+ 19: cow
38
+ 20: elephant
39
+ 21: bear
40
+ 22: zebra
41
+ 23: giraffe
42
+ 24: backpack
43
+ 25: umbrella
44
+ 26: handbag
45
+ 27: tie
46
+ 28: suitcase
47
+ 29: frisbee
48
+ 30: skis
49
+ 31: snowboard
50
+ 32: sports ball
51
+ 33: kite
52
+ 34: baseball bat
53
+ 35: baseball glove
54
+ 36: skateboard
55
+ 37: surfboard
56
+ 38: tennis racket
57
+ 39: bottle
58
+ 40: wine glass
59
+ 41: cup
60
+ 42: fork
61
+ 43: knife
62
+ 44: spoon
63
+ 45: bowl
64
+ 46: banana
65
+ 47: apple
66
+ 48: sandwich
67
+ 49: orange
68
+ 50: broccoli
69
+ 51: carrot
70
+ 52: hot dog
71
+ 53: pizza
72
+ 54: donut
73
+ 55: cake
74
+ 56: chair
75
+ 57: couch
76
+ 58: potted plant
77
+ 59: bed
78
+ 60: dining table
79
+ 61: toilet
80
+ 62: tv
81
+ 63: laptop
82
+ 64: mouse
83
+ 65: remote
84
+ 66: keyboard
85
+ 67: cell phone
86
+ 68: microwave
87
+ 69: oven
88
+ 70: toaster
89
+ 71: sink
90
+ 72: refrigerator
91
+ 73: book
92
+ 74: clock
93
+ 75: vase
94
+ 76: scissors
95
+ 77: teddy bear
96
+ 78: hair drier
97
+ 79: toothbrush
98
+
99
+
100
+ # Download script/URL (optional)
101
+ download: https://ultralytics.com/assets/coco8.zip
ultralytics/datasets/xView.yaml ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
3
+ # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
4
+ # Example usage: yolo train data=xView.yaml
5
+ # parent
6
+ # ├── ultralytics
7
+ # └── datasets
8
+ # └── xView ← downloads here (20.7 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/xView # dataset root dir
13
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
14
+ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
15
+
16
+ # Classes
17
+ names:
18
+ 0: Fixed-wing Aircraft
19
+ 1: Small Aircraft
20
+ 2: Cargo Plane
21
+ 3: Helicopter
22
+ 4: Passenger Vehicle
23
+ 5: Small Car
24
+ 6: Bus
25
+ 7: Pickup Truck
26
+ 8: Utility Truck
27
+ 9: Truck
28
+ 10: Cargo Truck
29
+ 11: Truck w/Box
30
+ 12: Truck Tractor
31
+ 13: Trailer
32
+ 14: Truck w/Flatbed
33
+ 15: Truck w/Liquid
34
+ 16: Crane Truck
35
+ 17: Railway Vehicle
36
+ 18: Passenger Car
37
+ 19: Cargo Car
38
+ 20: Flat Car
39
+ 21: Tank car
40
+ 22: Locomotive
41
+ 23: Maritime Vessel
42
+ 24: Motorboat
43
+ 25: Sailboat
44
+ 26: Tugboat
45
+ 27: Barge
46
+ 28: Fishing Vessel
47
+ 29: Ferry
48
+ 30: Yacht
49
+ 31: Container Ship
50
+ 32: Oil Tanker
51
+ 33: Engineering Vehicle
52
+ 34: Tower crane
53
+ 35: Container Crane
54
+ 36: Reach Stacker
55
+ 37: Straddle Carrier
56
+ 38: Mobile Crane
57
+ 39: Dump Truck
58
+ 40: Haul Truck
59
+ 41: Scraper/Tractor
60
+ 42: Front loader/Bulldozer
61
+ 43: Excavator
62
+ 44: Cement Mixer
63
+ 45: Ground Grader
64
+ 46: Hut/Tent
65
+ 47: Shed
66
+ 48: Building
67
+ 49: Aircraft Hangar
68
+ 50: Damaged Building
69
+ 51: Facility
70
+ 52: Construction Site
71
+ 53: Vehicle Lot
72
+ 54: Helipad
73
+ 55: Storage Tank
74
+ 56: Shipping container lot
75
+ 57: Shipping Container
76
+ 58: Pylon
77
+ 59: Tower
78
+
79
+
80
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
81
+ download: |
82
+ import json
83
+ import os
84
+ from pathlib import Path
85
+
86
+ import numpy as np
87
+ from PIL import Image
88
+ from tqdm import tqdm
89
+
90
+ from ultralytics.yolo.data.dataloaders.v5loader import autosplit
91
+ from ultralytics.yolo.utils.ops import xyxy2xywhn
92
+
93
+
94
+ def convert_labels(fname=Path('xView/xView_train.geojson')):
95
+ # Convert xView geoJSON labels to YOLO format
96
+ path = fname.parent
97
+ with open(fname) as f:
98
+ print(f'Loading {fname}...')
99
+ data = json.load(f)
100
+
101
+ # Make dirs
102
+ labels = Path(path / 'labels' / 'train')
103
+ os.system(f'rm -rf {labels}')
104
+ labels.mkdir(parents=True, exist_ok=True)
105
+
106
+ # xView classes 11-94 to 0-59
107
+ xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
108
+ 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
109
+ 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
110
+ 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
111
+
112
+ shapes = {}
113
+ for feature in tqdm(data['features'], desc=f'Converting {fname}'):
114
+ p = feature['properties']
115
+ if p['bounds_imcoords']:
116
+ id = p['image_id']
117
+ file = path / 'train_images' / id
118
+ if file.exists(): # 1395.tif missing
119
+ try:
120
+ box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
121
+ assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
122
+ cls = p['type_id']
123
+ cls = xview_class2index[int(cls)] # xView class to 0-60
124
+ assert 59 >= cls >= 0, f'incorrect class index {cls}'
125
+
126
+ # Write YOLO label
127
+ if id not in shapes:
128
+ shapes[id] = Image.open(file).size
129
+ box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
130
+ with open((labels / id).with_suffix('.txt'), 'a') as f:
131
+ f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
132
+ except Exception as e:
133
+ print(f'WARNING: skipping one label for {file}: {e}')
134
+
135
+
136
+ # Download manually from https://challenge.xviewdataset.org
137
+ dir = Path(yaml['path']) # dataset root dir
138
+ # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
139
+ # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
140
+ # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
141
+ # download(urls, dir=dir)
142
+
143
+ # Convert labels
144
+ convert_labels(dir / 'xView_train.geojson')
145
+
146
+ # Move images
147
+ images = Path(dir / 'images')
148
+ images.mkdir(parents=True, exist_ok=True)
149
+ Path(dir / 'train_images').rename(dir / 'images' / 'train')
150
+ Path(dir / 'val_images').rename(dir / 'images' / 'val')
151
+
152
+ # Split
153
+ autosplit(dir / 'images' / 'train')
ultralytics/hub/__init__.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import requests
4
+
5
+ from ultralytics.hub.auth import Auth
6
+ from ultralytics.hub.utils import PREFIX
7
+ from ultralytics.yolo.data.utils import HUBDatasetStats
8
+ from ultralytics.yolo.utils import LOGGER, SETTINGS, USER_CONFIG_DIR, yaml_save
9
+
10
+
11
+ def login(api_key=''):
12
+ """
13
+ Log in to the Ultralytics HUB API using the provided API key.
14
+
15
+ Args:
16
+ api_key (str, optional): May be an API key or a combination API key and model ID, i.e. key_id
17
+
18
+ Example:
19
+ from ultralytics import hub
20
+ hub.login('API_KEY')
21
+ """
22
+ Auth(api_key, verbose=True)
23
+
24
+
25
+ def logout():
26
+ """
27
+ Log out of Ultralytics HUB by removing the API key from the settings file. To log in again, use 'yolo hub login'.
28
+
29
+ Example:
30
+ from ultralytics import hub
31
+ hub.logout()
32
+ """
33
+ SETTINGS['api_key'] = ''
34
+ yaml_save(USER_CONFIG_DIR / 'settings.yaml', SETTINGS)
35
+ LOGGER.info(f"{PREFIX}logged out ✅. To log in again, use 'yolo hub login'.")
36
+
37
+
38
+ def start(key=''):
39
+ """
40
+ Start training models with Ultralytics HUB (DEPRECATED).
41
+
42
+ Args:
43
+ key (str, optional): A string containing either the API key and model ID combination (apikey_modelid),
44
+ or the full model URL (https://hub.ultralytics.com/models/apikey_modelid).
45
+ """
46
+ api_key, model_id = key.split('_')
47
+ LOGGER.warning(f"""
48
+ WARNING ⚠️ ultralytics.start() is deprecated after 8.0.60. Updated usage to train Ultralytics HUB models is:
49
+
50
+ from ultralytics import YOLO, hub
51
+
52
+ hub.login('{api_key}')
53
+ model = YOLO('https://hub.ultralytics.com/models/{model_id}')
54
+ model.train()""")
55
+
56
+
57
+ def reset_model(model_id=''):
58
+ """Reset a trained model to an untrained state."""
59
+ r = requests.post('https://api.ultralytics.com/model-reset', json={'apiKey': Auth().api_key, 'modelId': model_id})
60
+ if r.status_code == 200:
61
+ LOGGER.info(f'{PREFIX}Model reset successfully')
62
+ return
63
+ LOGGER.warning(f'{PREFIX}Model reset failure {r.status_code} {r.reason}')
64
+
65
+
66
+ def export_fmts_hub():
67
+ """Returns a list of HUB-supported export formats."""
68
+ from ultralytics.yolo.engine.exporter import export_formats
69
+ return list(export_formats()['Argument'][1:]) + ['ultralytics_tflite', 'ultralytics_coreml']
70
+
71
+
72
+ def export_model(model_id='', format='torchscript'):
73
+ """Export a model to all formats."""
74
+ assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
75
+ r = requests.post(f'https://api.ultralytics.com/v1/models/{model_id}/export',
76
+ json={'format': format},
77
+ headers={'x-api-key': Auth().api_key})
78
+ assert r.status_code == 200, f'{PREFIX}{format} export failure {r.status_code} {r.reason}'
79
+ LOGGER.info(f'{PREFIX}{format} export started ✅')
80
+
81
+
82
+ def get_export(model_id='', format='torchscript'):
83
+ """Get an exported model dictionary with download URL."""
84
+ assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
85
+ r = requests.post('https://api.ultralytics.com/get-export',
86
+ json={
87
+ 'apiKey': Auth().api_key,
88
+ 'modelId': model_id,
89
+ 'format': format})
90
+ assert r.status_code == 200, f'{PREFIX}{format} get_export failure {r.status_code} {r.reason}'
91
+ return r.json()
92
+
93
+
94
+ def check_dataset(path='', task='detect'):
95
+ """
96
+ Function for error-checking HUB dataset Zip file before upload
97
+
98
+ Arguments
99
+ path: Path to data.zip (with data.yaml inside data.zip)
100
+ task: Dataset task. Options are 'detect', 'segment', 'pose', 'classify'.
101
+
102
+ Usage
103
+ from ultralytics.hub import check_dataset
104
+ check_dataset('path/to/coco8.zip', task='detect') # detect dataset
105
+ check_dataset('path/to/coco8-seg.zip', task='segment') # segment dataset
106
+ check_dataset('path/to/coco8-pose.zip', task='pose') # pose dataset
107
+ """
108
+ HUBDatasetStats(path=path, task=task).get_json()
109
+ LOGGER.info('Checks completed correctly ✅. Upload this dataset to https://hub.ultralytics.com/datasets/.')
110
+
111
+
112
+ if __name__ == '__main__':
113
+ start()
ultralytics/hub/auth.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import requests
4
+
5
+ from ultralytics.hub.utils import HUB_API_ROOT, PREFIX, request_with_credentials
6
+ from ultralytics.yolo.utils import LOGGER, SETTINGS, emojis, is_colab, set_settings
7
+
8
+ API_KEY_URL = 'https://hub.ultralytics.com/settings?tab=api+keys'
9
+
10
+
11
+ class Auth:
12
+ id_token = api_key = model_key = False
13
+
14
+ def __init__(self, api_key='', verbose=False):
15
+ """
16
+ Initialize the Auth class with an optional API key.
17
+
18
+ Args:
19
+ api_key (str, optional): May be an API key or a combination API key and model ID, i.e. key_id
20
+ """
21
+ # Split the input API key in case it contains a combined key_model and keep only the API key part
22
+ api_key = api_key.split('_')[0]
23
+
24
+ # Set API key attribute as value passed or SETTINGS API key if none passed
25
+ self.api_key = api_key or SETTINGS.get('api_key', '')
26
+
27
+ # If an API key is provided
28
+ if self.api_key:
29
+ # If the provided API key matches the API key in the SETTINGS
30
+ if self.api_key == SETTINGS.get('api_key'):
31
+ # Log that the user is already logged in
32
+ if verbose:
33
+ LOGGER.info(f'{PREFIX}Authenticated ✅')
34
+ return
35
+ else:
36
+ # Attempt to authenticate with the provided API key
37
+ success = self.authenticate()
38
+ # If the API key is not provided and the environment is a Google Colab notebook
39
+ elif is_colab():
40
+ # Attempt to authenticate using browser cookies
41
+ success = self.auth_with_cookies()
42
+ else:
43
+ # Request an API key
44
+ success = self.request_api_key()
45
+
46
+ # Update SETTINGS with the new API key after successful authentication
47
+ if success:
48
+ set_settings({'api_key': self.api_key})
49
+ # Log that the new login was successful
50
+ if verbose:
51
+ LOGGER.info(f'{PREFIX}New authentication successful ✅')
52
+ elif verbose:
53
+ LOGGER.info(f'{PREFIX}Retrieve API key from {API_KEY_URL}')
54
+
55
+ def request_api_key(self, max_attempts=3):
56
+ """
57
+ Prompt the user to input their API key. Returns the model ID.
58
+ """
59
+ import getpass
60
+ for attempts in range(max_attempts):
61
+ LOGGER.info(f'{PREFIX}Login. Attempt {attempts + 1} of {max_attempts}')
62
+ input_key = getpass.getpass(f'Enter API key from {API_KEY_URL} ')
63
+ self.api_key = input_key.split('_')[0] # remove model id if present
64
+ if self.authenticate():
65
+ return True
66
+ raise ConnectionError(emojis(f'{PREFIX}Failed to authenticate ❌'))
67
+
68
+ def authenticate(self) -> bool:
69
+ """
70
+ Attempt to authenticate with the server using either id_token or API key.
71
+
72
+ Returns:
73
+ bool: True if authentication is successful, False otherwise.
74
+ """
75
+ try:
76
+ header = self.get_auth_header()
77
+ if header:
78
+ r = requests.post(f'{HUB_API_ROOT}/v1/auth', headers=header)
79
+ if not r.json().get('success', False):
80
+ raise ConnectionError('Unable to authenticate.')
81
+ return True
82
+ raise ConnectionError('User has not authenticated locally.')
83
+ except ConnectionError:
84
+ self.id_token = self.api_key = False # reset invalid
85
+ LOGGER.warning(f'{PREFIX}Invalid API key ⚠️')
86
+ return False
87
+
88
+ def auth_with_cookies(self) -> bool:
89
+ """
90
+ Attempt to fetch authentication via cookies and set id_token.
91
+ User must be logged in to HUB and running in a supported browser.
92
+
93
+ Returns:
94
+ bool: True if authentication is successful, False otherwise.
95
+ """
96
+ if not is_colab():
97
+ return False # Currently only works with Colab
98
+ try:
99
+ authn = request_with_credentials(f'{HUB_API_ROOT}/v1/auth/auto')
100
+ if authn.get('success', False):
101
+ self.id_token = authn.get('data', {}).get('idToken', None)
102
+ self.authenticate()
103
+ return True
104
+ raise ConnectionError('Unable to fetch browser authentication details.')
105
+ except ConnectionError:
106
+ self.id_token = False # reset invalid
107
+ return False
108
+
109
+ def get_auth_header(self):
110
+ """
111
+ Get the authentication header for making API requests.
112
+
113
+ Returns:
114
+ (dict): The authentication header if id_token or API key is set, None otherwise.
115
+ """
116
+ if self.id_token:
117
+ return {'authorization': f'Bearer {self.id_token}'}
118
+ elif self.api_key:
119
+ return {'x-api-key': self.api_key}
120
+ else:
121
+ return None
122
+
123
+ def get_state(self) -> bool:
124
+ """
125
+ Get the authentication state.
126
+
127
+ Returns:
128
+ bool: True if either id_token or API key is set, False otherwise.
129
+ """
130
+ return self.id_token or self.api_key
131
+
132
+ def set_api_key(self, key: str):
133
+ """
134
+ Set the API key for authentication.
135
+
136
+ Args:
137
+ key (str): The API key string.
138
+ """
139
+ self.api_key = key
ultralytics/hub/session.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ import signal
3
+ import sys
4
+ from pathlib import Path
5
+ from time import sleep
6
+
7
+ import requests
8
+
9
+ from ultralytics.hub.utils import HUB_API_ROOT, PREFIX, smart_request
10
+ from ultralytics.yolo.utils import LOGGER, __version__, checks, emojis, is_colab, threaded
11
+ from ultralytics.yolo.utils.errors import HUBModelError
12
+
13
+ AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
14
+
15
+
16
+ class HUBTrainingSession:
17
+ """
18
+ HUB training session for Ultralytics HUB YOLO models. Handles model initialization, heartbeats, and checkpointing.
19
+
20
+ Args:
21
+ url (str): Model identifier used to initialize the HUB training session.
22
+
23
+ Attributes:
24
+ agent_id (str): Identifier for the instance communicating with the server.
25
+ model_id (str): Identifier for the YOLOv5 model being trained.
26
+ model_url (str): URL for the model in Ultralytics HUB.
27
+ api_url (str): API URL for the model in Ultralytics HUB.
28
+ auth_header (Dict): Authentication header for the Ultralytics HUB API requests.
29
+ rate_limits (Dict): Rate limits for different API calls (in seconds).
30
+ timers (Dict): Timers for rate limiting.
31
+ metrics_queue (Dict): Queue for the model's metrics.
32
+ model (Dict): Model data fetched from Ultralytics HUB.
33
+ alive (bool): Indicates if the heartbeat loop is active.
34
+ """
35
+
36
+ def __init__(self, url):
37
+ """
38
+ Initialize the HUBTrainingSession with the provided model identifier.
39
+
40
+ Args:
41
+ url (str): Model identifier used to initialize the HUB training session.
42
+ It can be a URL string or a model key with specific format.
43
+
44
+ Raises:
45
+ ValueError: If the provided model identifier is invalid.
46
+ ConnectionError: If connecting with global API key is not supported.
47
+ """
48
+
49
+ from ultralytics.hub.auth import Auth
50
+
51
+ # Parse input
52
+ if url.startswith('https://hub.ultralytics.com/models/'):
53
+ url = url.split('https://hub.ultralytics.com/models/')[-1]
54
+ if [len(x) for x in url.split('_')] == [42, 20]:
55
+ key, model_id = url.split('_')
56
+ elif len(url) == 20:
57
+ key, model_id = '', url
58
+ else:
59
+ raise HUBModelError(f"model='{url}' not found. Check format is correct, i.e. "
60
+ f"model='https://hub.ultralytics.com/models/MODEL_ID' and try again.")
61
+
62
+ # Authorize
63
+ auth = Auth(key)
64
+ self.agent_id = None # identifies which instance is communicating with server
65
+ self.model_id = model_id
66
+ self.model_url = f'https://hub.ultralytics.com/models/{model_id}'
67
+ self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
68
+ self.auth_header = auth.get_auth_header()
69
+ self.rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
70
+ self.timers = {} # rate limit timers (seconds)
71
+ self.metrics_queue = {} # metrics queue
72
+ self.model = self._get_model()
73
+ self.alive = True
74
+ self._start_heartbeat() # start heartbeats
75
+ self._register_signal_handlers()
76
+ LOGGER.info(f'{PREFIX}View model at {self.model_url} 🚀')
77
+
78
+ def _register_signal_handlers(self):
79
+ """Register signal handlers for SIGTERM and SIGINT signals to gracefully handle termination."""
80
+ signal.signal(signal.SIGTERM, self._handle_signal)
81
+ signal.signal(signal.SIGINT, self._handle_signal)
82
+
83
+ def _handle_signal(self, signum, frame):
84
+ """
85
+ Handle kill signals and prevent heartbeats from being sent on Colab after termination.
86
+ This method does not use frame, it is included as it is passed by signal.
87
+ """
88
+ if self.alive is True:
89
+ LOGGER.info(f'{PREFIX}Kill signal received! ❌')
90
+ self._stop_heartbeat()
91
+ sys.exit(signum)
92
+
93
+ def _stop_heartbeat(self):
94
+ """Terminate the heartbeat loop."""
95
+ self.alive = False
96
+
97
+ def upload_metrics(self):
98
+ """Upload model metrics to Ultralytics HUB."""
99
+ payload = {'metrics': self.metrics_queue.copy(), 'type': 'metrics'}
100
+ smart_request('post', self.api_url, json=payload, headers=self.auth_header, code=2)
101
+
102
+ def _get_model(self):
103
+ """Fetch and return model data from Ultralytics HUB."""
104
+ api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}'
105
+
106
+ try:
107
+ response = smart_request('get', api_url, headers=self.auth_header, thread=False, code=0)
108
+ data = response.json().get('data', None)
109
+
110
+ if data.get('status', None) == 'trained':
111
+ raise ValueError(emojis(f'Model is already trained and uploaded to {self.model_url} 🚀'))
112
+
113
+ if not data.get('data', None):
114
+ raise ValueError('Dataset may still be processing. Please wait a minute and try again.') # RF fix
115
+ self.model_id = data['id']
116
+
117
+ if data['status'] == 'new': # new model to start training
118
+ self.train_args = {
119
+ # TODO: deprecate 'batch_size' key for 'batch' in 3Q23
120
+ 'batch': data['batch' if ('batch' in data) else 'batch_size'],
121
+ 'epochs': data['epochs'],
122
+ 'imgsz': data['imgsz'],
123
+ 'patience': data['patience'],
124
+ 'device': data['device'],
125
+ 'cache': data['cache'],
126
+ 'data': data['data']}
127
+ self.model_file = data.get('cfg') or data.get('weights') # cfg for pretrained=False
128
+ self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False) # YOLOv5->YOLOv5u
129
+ elif data['status'] == 'training': # existing model to resume training
130
+ self.train_args = {'data': data['data'], 'resume': True}
131
+ self.model_file = data['resume']
132
+
133
+ return data
134
+ except requests.exceptions.ConnectionError as e:
135
+ raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e
136
+ except Exception:
137
+ raise
138
+
139
+ def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
140
+ """
141
+ Upload a model checkpoint to Ultralytics HUB.
142
+
143
+ Args:
144
+ epoch (int): The current training epoch.
145
+ weights (str): Path to the model weights file.
146
+ is_best (bool): Indicates if the current model is the best one so far.
147
+ map (float): Mean average precision of the model.
148
+ final (bool): Indicates if the model is the final model after training.
149
+ """
150
+ if Path(weights).is_file():
151
+ with open(weights, 'rb') as f:
152
+ file = f.read()
153
+ else:
154
+ LOGGER.warning(f'{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.')
155
+ file = None
156
+ url = f'{self.api_url}/upload'
157
+ # url = 'http://httpbin.org/post' # for debug
158
+ data = {'epoch': epoch}
159
+ if final:
160
+ data.update({'type': 'final', 'map': map})
161
+ smart_request('post',
162
+ url,
163
+ data=data,
164
+ files={'best.pt': file},
165
+ headers=self.auth_header,
166
+ retry=10,
167
+ timeout=3600,
168
+ thread=False,
169
+ progress=True,
170
+ code=4)
171
+ else:
172
+ data.update({'type': 'epoch', 'isBest': bool(is_best)})
173
+ smart_request('post', url, data=data, files={'last.pt': file}, headers=self.auth_header, code=3)
174
+
175
+ @threaded
176
+ def _start_heartbeat(self):
177
+ """Begin a threaded heartbeat loop to report the agent's status to Ultralytics HUB."""
178
+ while self.alive:
179
+ r = smart_request('post',
180
+ f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
181
+ json={
182
+ 'agent': AGENT_NAME,
183
+ 'agentId': self.agent_id},
184
+ headers=self.auth_header,
185
+ retry=0,
186
+ code=5,
187
+ thread=False) # already in a thread
188
+ self.agent_id = r.json().get('data', {}).get('agentId', None)
189
+ sleep(self.rate_limits['heartbeat'])
ultralytics/hub/utils.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import os
4
+ import platform
5
+ import random
6
+ import sys
7
+ import threading
8
+ import time
9
+ from pathlib import Path
10
+
11
+ import requests
12
+ from tqdm import tqdm
13
+
14
+ from ultralytics.yolo.utils import (ENVIRONMENT, LOGGER, ONLINE, RANK, SETTINGS, TESTS_RUNNING, TQDM_BAR_FORMAT,
15
+ TryExcept, __version__, colorstr, get_git_origin_url, is_colab, is_git_dir,
16
+ is_pip_package)
17
+
18
+ PREFIX = colorstr('Ultralytics HUB: ')
19
+ HELP_MSG = 'If this issue persists please visit https://github.com/ultralytics/hub/issues for assistance.'
20
+ HUB_API_ROOT = os.environ.get('ULTRALYTICS_HUB_API', 'https://api.ultralytics.com')
21
+
22
+
23
+ def request_with_credentials(url: str) -> any:
24
+ """
25
+ Make an AJAX request with cookies attached in a Google Colab environment.
26
+
27
+ Args:
28
+ url (str): The URL to make the request to.
29
+
30
+ Returns:
31
+ (any): The response data from the AJAX request.
32
+
33
+ Raises:
34
+ OSError: If the function is not run in a Google Colab environment.
35
+ """
36
+ if not is_colab():
37
+ raise OSError('request_with_credentials() must run in a Colab environment')
38
+ from google.colab import output # noqa
39
+ from IPython import display # noqa
40
+ display.display(
41
+ display.Javascript("""
42
+ window._hub_tmp = new Promise((resolve, reject) => {
43
+ const timeout = setTimeout(() => reject("Failed authenticating existing browser session"), 5000)
44
+ fetch("%s", {
45
+ method: 'POST',
46
+ credentials: 'include'
47
+ })
48
+ .then((response) => resolve(response.json()))
49
+ .then((json) => {
50
+ clearTimeout(timeout);
51
+ }).catch((err) => {
52
+ clearTimeout(timeout);
53
+ reject(err);
54
+ });
55
+ });
56
+ """ % url))
57
+ return output.eval_js('_hub_tmp')
58
+
59
+
60
+ def requests_with_progress(method, url, **kwargs):
61
+ """
62
+ Make an HTTP request using the specified method and URL, with an optional progress bar.
63
+
64
+ Args:
65
+ method (str): The HTTP method to use (e.g. 'GET', 'POST').
66
+ url (str): The URL to send the request to.
67
+ **kwargs (dict): Additional keyword arguments to pass to the underlying `requests.request` function.
68
+
69
+ Returns:
70
+ (requests.Response): The response object from the HTTP request.
71
+
72
+ Note:
73
+ If 'progress' is set to True, the progress bar will display the download progress
74
+ for responses with a known content length.
75
+ """
76
+ progress = kwargs.pop('progress', False)
77
+ if not progress:
78
+ return requests.request(method, url, **kwargs)
79
+ response = requests.request(method, url, stream=True, **kwargs)
80
+ total = int(response.headers.get('content-length', 0)) # total size
81
+ pbar = tqdm(total=total, unit='B', unit_scale=True, unit_divisor=1024, bar_format=TQDM_BAR_FORMAT)
82
+ for data in response.iter_content(chunk_size=1024):
83
+ pbar.update(len(data))
84
+ pbar.close()
85
+ return response
86
+
87
+
88
+ def smart_request(method, url, retry=3, timeout=30, thread=True, code=-1, verbose=True, progress=False, **kwargs):
89
+ """
90
+ Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
91
+
92
+ Args:
93
+ method (str): The HTTP method to use for the request. Choices are 'post' and 'get'.
94
+ url (str): The URL to make the request to.
95
+ retry (int, optional): Number of retries to attempt before giving up. Default is 3.
96
+ timeout (int, optional): Timeout in seconds after which the function will give up retrying. Default is 30.
97
+ thread (bool, optional): Whether to execute the request in a separate daemon thread. Default is True.
98
+ code (int, optional): An identifier for the request, used for logging purposes. Default is -1.
99
+ verbose (bool, optional): A flag to determine whether to print out to console or not. Default is True.
100
+ progress (bool, optional): Whether to show a progress bar during the request. Default is False.
101
+ **kwargs (dict): Keyword arguments to be passed to the requests function specified in method.
102
+
103
+ Returns:
104
+ (requests.Response): The HTTP response object. If the request is executed in a separate thread, returns None.
105
+ """
106
+ retry_codes = (408, 500) # retry only these codes
107
+
108
+ @TryExcept(verbose=verbose)
109
+ def func(func_method, func_url, **func_kwargs):
110
+ """Make HTTP requests with retries and timeouts, with optional progress tracking."""
111
+ r = None # response
112
+ t0 = time.time() # initial time for timer
113
+ for i in range(retry + 1):
114
+ if (time.time() - t0) > timeout:
115
+ break
116
+ r = requests_with_progress(func_method, func_url, **func_kwargs) # i.e. get(url, data, json, files)
117
+ if r.status_code < 300: # return codes in the 2xx range are generally considered "good" or "successful"
118
+ break
119
+ try:
120
+ m = r.json().get('message', 'No JSON message.')
121
+ except AttributeError:
122
+ m = 'Unable to read JSON.'
123
+ if i == 0:
124
+ if r.status_code in retry_codes:
125
+ m += f' Retrying {retry}x for {timeout}s.' if retry else ''
126
+ elif r.status_code == 429: # rate limit
127
+ h = r.headers # response headers
128
+ m = f"Rate limit reached ({h['X-RateLimit-Remaining']}/{h['X-RateLimit-Limit']}). " \
129
+ f"Please retry after {h['Retry-After']}s."
130
+ if verbose:
131
+ LOGGER.warning(f'{PREFIX}{m} {HELP_MSG} ({r.status_code} #{code})')
132
+ if r.status_code not in retry_codes:
133
+ return r
134
+ time.sleep(2 ** i) # exponential standoff
135
+ return r
136
+
137
+ args = method, url
138
+ kwargs['progress'] = progress
139
+ if thread:
140
+ threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True).start()
141
+ else:
142
+ return func(*args, **kwargs)
143
+
144
+
145
+ class Events:
146
+ """
147
+ A class for collecting anonymous event analytics. Event analytics are enabled when sync=True in settings and
148
+ disabled when sync=False. Run 'yolo settings' to see and update settings YAML file.
149
+
150
+ Attributes:
151
+ url (str): The URL to send anonymous events.
152
+ rate_limit (float): The rate limit in seconds for sending events.
153
+ metadata (dict): A dictionary containing metadata about the environment.
154
+ enabled (bool): A flag to enable or disable Events based on certain conditions.
155
+ """
156
+
157
+ url = 'https://www.google-analytics.com/mp/collect?measurement_id=G-X8NCJYTQXM&api_secret=QLQrATrNSwGRFRLE-cbHJw'
158
+
159
+ def __init__(self):
160
+ """
161
+ Initializes the Events object with default values for events, rate_limit, and metadata.
162
+ """
163
+ self.events = [] # events list
164
+ self.rate_limit = 60.0 # rate limit (seconds)
165
+ self.t = 0.0 # rate limit timer (seconds)
166
+ self.metadata = {
167
+ 'cli': Path(sys.argv[0]).name == 'yolo',
168
+ 'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other',
169
+ 'python': '.'.join(platform.python_version_tuple()[:2]), # i.e. 3.10
170
+ 'version': __version__,
171
+ 'env': ENVIRONMENT,
172
+ 'session_id': round(random.random() * 1E15),
173
+ 'engagement_time_msec': 1000}
174
+ self.enabled = \
175
+ SETTINGS['sync'] and \
176
+ RANK in (-1, 0) and \
177
+ not TESTS_RUNNING and \
178
+ ONLINE and \
179
+ (is_pip_package() or get_git_origin_url() == 'https://github.com/ultralytics/ultralytics.git')
180
+
181
+ def __call__(self, cfg):
182
+ """
183
+ Attempts to add a new event to the events list and send events if the rate limit is reached.
184
+
185
+ Args:
186
+ cfg (IterableSimpleNamespace): The configuration object containing mode and task information.
187
+ """
188
+ if not self.enabled:
189
+ # Events disabled, do nothing
190
+ return
191
+
192
+ # Attempt to add to events
193
+ if len(self.events) < 25: # Events list limited to 25 events (drop any events past this)
194
+ params = {**self.metadata, **{'task': cfg.task}}
195
+ if cfg.mode == 'export':
196
+ params['format'] = cfg.format
197
+ self.events.append({'name': cfg.mode, 'params': params})
198
+
199
+ # Check rate limit
200
+ t = time.time()
201
+ if (t - self.t) < self.rate_limit:
202
+ # Time is under rate limiter, wait to send
203
+ return
204
+
205
+ # Time is over rate limiter, send now
206
+ data = {'client_id': SETTINGS['uuid'], 'events': self.events} # SHA-256 anonymized UUID hash and events list
207
+
208
+ # POST equivalent to requests.post(self.url, json=data)
209
+ smart_request('post', self.url, json=data, retry=0, verbose=False)
210
+
211
+ # Reset events and rate limit timer
212
+ self.events = []
213
+ self.t = t
214
+
215
+
216
+ # Run below code on hub/utils init -------------------------------------------------------------------------------------
217
+ events = Events()
ultralytics/models/README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Models
2
+
3
+ Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration
4
+ files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted
5
+ and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image
6
+ segmentation tasks.
7
+
8
+ These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like
9
+ instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms,
10
+ from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this
11
+ directory provides a great starting point for your custom model development needs.
12
+
13
+ To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've
14
+ selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full
15
+ details at the Ultralytics [Docs](https://docs.ultralytics.com/models), and if you need help or have any questions, feel free
16
+ to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
17
+
18
+ ### Usage
19
+
20
+ Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
21
+
22
+ ```bash
23
+ yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
24
+ ```
25
+
26
+ They may also be used directly in a Python environment, and accepts the same
27
+ [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
28
+
29
+ ```python
30
+ from ultralytics import YOLO
31
+
32
+ model = YOLO("model.yaml") # build a YOLOv8n model from scratch
33
+ # YOLO("model.pt") use pre-trained model if available
34
+ model.info() # display model information
35
+ model.train(data="coco128.yaml", epochs=100) # train the model
36
+ ```
37
+
38
+ ## Pre-trained Model Architectures
39
+
40
+ Ultralytics supports many model architectures. Visit https://docs.ultralytics.com/models to view detailed information
41
+ and usage. Any of these models can be used by loading their configs or pretrained checkpoints if available.
42
+
43
+ ## Contributing New Models
44
+
45
+ If you've developed a new model architecture or have improvements for existing models that you'd like to contribute to the Ultralytics community, please submit your contribution in a new Pull Request. For more details, visit our [Contributing Guide](https://docs.ultralytics.com/help/contributing).
ultralytics/models/rt-detr/rt-detr-l.yaml ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ l: [1.00, 1.00, 1024]
9
+
10
+ backbone:
11
+ # [from, repeats, module, args]
12
+ - [-1, 1, HGStem, [32, 48]] # 0-P2/4
13
+ - [-1, 6, HGBlock, [48, 128, 3]] # stage 1
14
+
15
+ - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
16
+ - [-1, 6, HGBlock, [96, 512, 3]] # stage 2
17
+
18
+ - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
19
+ - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
20
+ - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
21
+ - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
22
+
23
+ - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
24
+ - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
25
+
26
+ head:
27
+ - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
28
+ - [-1, 1, AIFI, [1024, 8]]
29
+ - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
30
+
31
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
32
+ - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
33
+ - [[-2, -1], 1, Concat, [1]]
34
+ - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
35
+ - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
36
+
37
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
38
+ - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
39
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
40
+ - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
41
+
42
+ - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
43
+ - [[-1, 17], 1, Concat, [1]] # cat Y4
44
+ - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
45
+
46
+ - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
47
+ - [[-1, 12], 1, Concat, [1]] # cat Y5
48
+ - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
49
+
50
+ - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
ultralytics/models/rt-detr/rt-detr-x.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # RT-DETR-x object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ x: [1.00, 1.00, 2048]
9
+
10
+ backbone:
11
+ # [from, repeats, module, args]
12
+ - [-1, 1, HGStem, [32, 64]] # 0-P2/4
13
+ - [-1, 6, HGBlock, [64, 128, 3]] # stage 1
14
+
15
+ - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
16
+ - [-1, 6, HGBlock, [128, 512, 3]]
17
+ - [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
18
+
19
+ - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
20
+ - [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
21
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
22
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
23
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
24
+ - [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
25
+
26
+ - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
27
+ - [-1, 6, HGBlock, [512, 2048, 5, True, False]]
28
+ - [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
29
+
30
+ head:
31
+ - [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2
32
+ - [-1, 1, AIFI, [2048, 8]]
33
+ - [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0
34
+
35
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
36
+ - [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1
37
+ - [[-2, -1], 1, Concat, [1]]
38
+ - [-1, 3, RepC3, [384]] # 20, fpn_blocks.0
39
+ - [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1
40
+
41
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
42
+ - [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0
43
+ - [[-2, -1], 1, Concat, [1]] # cat backbone P4
44
+ - [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1
45
+
46
+ - [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0
47
+ - [[-1, 21], 1, Concat, [1]] # cat Y4
48
+ - [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0
49
+
50
+ - [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1
51
+ - [[-1, 16], 1, Concat, [1]] # cat Y5
52
+ - [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1
53
+
54
+ - [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
ultralytics/models/v3/yolov3-spp.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv3-SPP object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ depth_multiple: 1.0 # model depth multiple
7
+ width_multiple: 1.0 # layer channel multiple
8
+
9
+ # darknet53 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [32, 3, 1]], # 0
13
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
14
+ [-1, 1, Bottleneck, [64]],
15
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
16
+ [-1, 2, Bottleneck, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
18
+ [-1, 8, Bottleneck, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
20
+ [-1, 8, Bottleneck, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
22
+ [-1, 4, Bottleneck, [1024]], # 10
23
+ ]
24
+
25
+ # YOLOv3-SPP head
26
+ head:
27
+ [[-1, 1, Bottleneck, [1024, False]],
28
+ [-1, 1, SPP, [512, [5, 9, 13]]],
29
+ [-1, 1, Conv, [1024, 3, 1]],
30
+ [-1, 1, Conv, [512, 1, 1]],
31
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
32
+
33
+ [-2, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
36
+ [-1, 1, Bottleneck, [512, False]],
37
+ [-1, 1, Bottleneck, [512, False]],
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
40
+
41
+ [-2, 1, Conv, [128, 1, 1]],
42
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
43
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
44
+ [-1, 1, Bottleneck, [256, False]],
45
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
46
+
47
+ [[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5)
48
+ ]
ultralytics/models/v3/yolov3-tiny.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv3-tiny object detection model with P4-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ depth_multiple: 1.0 # model depth multiple
7
+ width_multiple: 1.0 # layer channel multiple
8
+
9
+ # YOLOv3-tiny backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [16, 3, 1]], # 0
13
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
14
+ [-1, 1, Conv, [32, 3, 1]],
15
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
16
+ [-1, 1, Conv, [64, 3, 1]],
17
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
18
+ [-1, 1, Conv, [128, 3, 1]],
19
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
20
+ [-1, 1, Conv, [256, 3, 1]],
21
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
22
+ [-1, 1, Conv, [512, 3, 1]],
23
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
24
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
25
+ ]
26
+
27
+ # YOLOv3-tiny head
28
+ head:
29
+ [[-1, 1, Conv, [1024, 3, 1]],
30
+ [-1, 1, Conv, [256, 1, 1]],
31
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
32
+
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
36
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
37
+
38
+ [[19, 15], 1, Detect, [nc]], # Detect(P4, P5)
39
+ ]
ultralytics/models/v3/yolov3.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv3 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov3
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ depth_multiple: 1.0 # model depth multiple
7
+ width_multiple: 1.0 # layer channel multiple
8
+
9
+ # darknet53 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [32, 3, 1]], # 0
13
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
14
+ [-1, 1, Bottleneck, [64]],
15
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
16
+ [-1, 2, Bottleneck, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
18
+ [-1, 8, Bottleneck, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
20
+ [-1, 8, Bottleneck, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
22
+ [-1, 4, Bottleneck, [1024]], # 10
23
+ ]
24
+
25
+ # YOLOv3 head
26
+ head:
27
+ [[-1, 1, Bottleneck, [1024, False]],
28
+ [-1, 1, Conv, [512, 1, 1]],
29
+ [-1, 1, Conv, [1024, 3, 1]],
30
+ [-1, 1, Conv, [512, 1, 1]],
31
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
32
+
33
+ [-2, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
36
+ [-1, 1, Bottleneck, [512, False]],
37
+ [-1, 1, Bottleneck, [512, False]],
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
40
+
41
+ [-2, 1, Conv, [128, 1, 1]],
42
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
43
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
44
+ [-1, 1, Bottleneck, [256, False]],
45
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
46
+
47
+ [[27, 22, 15], 1, Detect, [nc]], # Detect(P3, P4, P5)
48
+ ]
ultralytics/models/v5/yolov5-p6.yaml ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv5 object detection model with P3-P6 outputs. For details see https://docs.ultralytics.com/models/yolov5
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov5n-p6.yaml' will call yolov5-p6.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024]
9
+ s: [0.33, 0.50, 1024]
10
+ m: [0.67, 0.75, 1024]
11
+ l: [1.00, 1.00, 1024]
12
+ x: [1.33, 1.25, 1024]
13
+
14
+ # YOLOv5 v6.0 backbone
15
+ backbone:
16
+ # [from, number, module, args]
17
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
18
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
19
+ [-1, 3, C3, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
21
+ [-1, 6, C3, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
23
+ [-1, 9, C3, [512]],
24
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
25
+ [-1, 3, C3, [768]],
26
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
27
+ [-1, 3, C3, [1024]],
28
+ [-1, 1, SPPF, [1024, 5]], # 11
29
+ ]
30
+
31
+ # YOLOv5 v6.0 head
32
+ head:
33
+ [[-1, 1, Conv, [768, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
36
+ [-1, 3, C3, [768, False]], # 15
37
+
38
+ [-1, 1, Conv, [512, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
41
+ [-1, 3, C3, [512, False]], # 19
42
+
43
+ [-1, 1, Conv, [256, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
46
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
47
+
48
+ [-1, 1, Conv, [256, 3, 2]],
49
+ [[-1, 20], 1, Concat, [1]], # cat head P4
50
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
51
+
52
+ [-1, 1, Conv, [512, 3, 2]],
53
+ [[-1, 16], 1, Concat, [1]], # cat head P5
54
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
55
+
56
+ [-1, 1, Conv, [768, 3, 2]],
57
+ [[-1, 12], 1, Concat, [1]], # cat head P6
58
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
59
+
60
+ [[23, 26, 29, 32], 1, Detect, [nc]], # Detect(P3, P4, P5, P6)
61
+ ]
ultralytics/models/v5/yolov5.yaml ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024]
9
+ s: [0.33, 0.50, 1024]
10
+ m: [0.67, 0.75, 1024]
11
+ l: [1.00, 1.00, 1024]
12
+ x: [1.33, 1.25, 1024]
13
+
14
+ # YOLOv5 v6.0 backbone
15
+ backbone:
16
+ # [from, number, module, args]
17
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
18
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
19
+ [-1, 3, C3, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
21
+ [-1, 6, C3, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
23
+ [-1, 9, C3, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
25
+ [-1, 3, C3, [1024]],
26
+ [-1, 1, SPPF, [1024, 5]], # 9
27
+ ]
28
+
29
+ # YOLOv5 v6.0 head
30
+ head:
31
+ [[-1, 1, Conv, [512, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
34
+ [-1, 3, C3, [512, False]], # 13
35
+
36
+ [-1, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
39
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
40
+
41
+ [-1, 1, Conv, [256, 3, 2]],
42
+ [[-1, 14], 1, Concat, [1]], # cat head P4
43
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
44
+
45
+ [-1, 1, Conv, [512, 3, 2]],
46
+ [[-1, 10], 1, Concat, [1]], # cat head P5
47
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
48
+
49
+ [[17, 20, 23], 1, Detect, [nc]], # Detect(P3, P4, P5)
50
+ ]
ultralytics/models/v6/yolov6.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
3
+
4
+ # Parameters
5
+ act: nn.ReLU()
6
+ nc: 80 # number of classes
7
+ scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
8
+ # [depth, width, max_channels]
9
+ n: [0.33, 0.25, 1024]
10
+ s: [0.33, 0.50, 1024]
11
+ m: [0.67, 0.75, 768]
12
+ l: [1.00, 1.00, 512]
13
+ x: [1.00, 1.25, 512]
14
+
15
+ # YOLOv6-3.0s backbone
16
+ backbone:
17
+ # [from, repeats, module, args]
18
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
19
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
20
+ - [-1, 6, Conv, [128, 3, 1]]
21
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
22
+ - [-1, 12, Conv, [256, 3, 1]]
23
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
24
+ - [-1, 18, Conv, [512, 3, 1]]
25
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
26
+ - [-1, 6, Conv, [1024, 3, 1]]
27
+ - [-1, 1, SPPF, [1024, 5]] # 9
28
+
29
+ # YOLOv6-3.0s head
30
+ head:
31
+ - [-1, 1, Conv, [256, 1, 1]]
32
+ - [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 1, Conv, [256, 3, 1]]
35
+ - [-1, 9, Conv, [256, 3, 1]] # 14
36
+
37
+ - [-1, 1, Conv, [128, 1, 1]]
38
+ - [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
39
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
40
+ - [-1, 1, Conv, [128, 3, 1]]
41
+ - [-1, 9, Conv, [128, 3, 1]] # 19
42
+
43
+ - [-1, 1, Conv, [128, 3, 2]]
44
+ - [[-1, 15], 1, Concat, [1]] # cat head P4
45
+ - [-1, 1, Conv, [256, 3, 1]]
46
+ - [-1, 9, Conv, [256, 3, 1]] # 23
47
+
48
+ - [-1, 1, Conv, [256, 3, 2]]
49
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
50
+ - [-1, 1, Conv, [512, 3, 1]]
51
+ - [-1, 9, Conv, [512, 3, 1]] # 27
52
+
53
+ - [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
ultralytics/models/v8/yolov8-cls.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
3
+
4
+ # Parameters
5
+ nc: 1000 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024]
9
+ s: [0.33, 0.50, 1024]
10
+ m: [0.67, 0.75, 1024]
11
+ l: [1.00, 1.00, 1024]
12
+ x: [1.00, 1.25, 1024]
13
+
14
+ # YOLOv8.0n backbone
15
+ backbone:
16
+ # [from, repeats, module, args]
17
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
18
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
19
+ - [-1, 3, C2f, [128, True]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
21
+ - [-1, 6, C2f, [256, True]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
23
+ - [-1, 6, C2f, [512, True]]
24
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
25
+ - [-1, 3, C2f, [1024, True]]
26
+
27
+ # YOLOv8.0n head
28
+ head:
29
+ - [-1, 1, Classify, [nc]] # Classify
ultralytics/models/v8/yolov8-p2.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8 object detection model with P2-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024]
9
+ s: [0.33, 0.50, 1024]
10
+ m: [0.67, 0.75, 768]
11
+ l: [1.00, 1.00, 512]
12
+ x: [1.00, 1.25, 512]
13
+
14
+ # YOLOv8.0 backbone
15
+ backbone:
16
+ # [from, repeats, module, args]
17
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
18
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
19
+ - [-1, 3, C2f, [128, True]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
21
+ - [-1, 6, C2f, [256, True]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
23
+ - [-1, 6, C2f, [512, True]]
24
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
25
+ - [-1, 3, C2f, [1024, True]]
26
+ - [-1, 1, SPPF, [1024, 5]] # 9
27
+
28
+ # YOLOv8.0-p2 head
29
+ head:
30
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
31
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
32
+ - [-1, 3, C2f, [512]] # 12
33
+
34
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
35
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
36
+ - [-1, 3, C2f, [256]] # 15 (P3/8-small)
37
+
38
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
39
+ - [[-1, 2], 1, Concat, [1]] # cat backbone P2
40
+ - [-1, 3, C2f, [128]] # 18 (P2/4-xsmall)
41
+
42
+ - [-1, 1, Conv, [128, 3, 2]]
43
+ - [[-1, 15], 1, Concat, [1]] # cat head P3
44
+ - [-1, 3, C2f, [256]] # 21 (P3/8-small)
45
+
46
+ - [-1, 1, Conv, [256, 3, 2]]
47
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
48
+ - [-1, 3, C2f, [512]] # 24 (P4/16-medium)
49
+
50
+ - [-1, 1, Conv, [512, 3, 2]]
51
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
52
+ - [-1, 3, C2f, [1024]] # 27 (P5/32-large)
53
+
54
+ - [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
ultralytics/models/v8/yolov8-p6.yaml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8 object detection model with P3-P6 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024]
9
+ s: [0.33, 0.50, 1024]
10
+ m: [0.67, 0.75, 768]
11
+ l: [1.00, 1.00, 512]
12
+ x: [1.00, 1.25, 512]
13
+
14
+ # YOLOv8.0x6 backbone
15
+ backbone:
16
+ # [from, repeats, module, args]
17
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
18
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
19
+ - [-1, 3, C2f, [128, True]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
21
+ - [-1, 6, C2f, [256, True]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
23
+ - [-1, 6, C2f, [512, True]]
24
+ - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
25
+ - [-1, 3, C2f, [768, True]]
26
+ - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
27
+ - [-1, 3, C2f, [1024, True]]
28
+ - [-1, 1, SPPF, [1024, 5]] # 11
29
+
30
+ # YOLOv8.0x6 head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
33
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P5
34
+ - [-1, 3, C2, [768, False]] # 14
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
37
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
38
+ - [-1, 3, C2, [512, False]] # 17
39
+
40
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
41
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
42
+ - [-1, 3, C2, [256, False]] # 20 (P3/8-small)
43
+
44
+ - [-1, 1, Conv, [256, 3, 2]]
45
+ - [[-1, 17], 1, Concat, [1]] # cat head P4
46
+ - [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
47
+
48
+ - [-1, 1, Conv, [512, 3, 2]]
49
+ - [[-1, 14], 1, Concat, [1]] # cat head P5
50
+ - [-1, 3, C2, [768, False]] # 26 (P5/32-large)
51
+
52
+ - [-1, 1, Conv, [768, 3, 2]]
53
+ - [[-1, 11], 1, Concat, [1]] # cat head P6
54
+ - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
55
+
56
+ - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
ultralytics/models/v8/yolov8-pose-p6.yaml ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
3
+
4
+ # Parameters
5
+ nc: 1 # number of classes
6
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
7
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
8
+ # [depth, width, max_channels]
9
+ n: [0.33, 0.25, 1024]
10
+ s: [0.33, 0.50, 1024]
11
+ m: [0.67, 0.75, 768]
12
+ l: [1.00, 1.00, 512]
13
+ x: [1.00, 1.25, 512]
14
+
15
+ # YOLOv8.0x6 backbone
16
+ backbone:
17
+ # [from, repeats, module, args]
18
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
19
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
20
+ - [-1, 3, C2f, [128, True]]
21
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
22
+ - [-1, 6, C2f, [256, True]]
23
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
24
+ - [-1, 6, C2f, [512, True]]
25
+ - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
26
+ - [-1, 3, C2f, [768, True]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
28
+ - [-1, 3, C2f, [1024, True]]
29
+ - [-1, 1, SPPF, [1024, 5]] # 11
30
+
31
+ # YOLOv8.0x6 head
32
+ head:
33
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
34
+ - [[-1, 8], 1, Concat, [1]] # cat backbone P5
35
+ - [-1, 3, C2, [768, False]] # 14
36
+
37
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
38
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
39
+ - [-1, 3, C2, [512, False]] # 17
40
+
41
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
42
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
43
+ - [-1, 3, C2, [256, False]] # 20 (P3/8-small)
44
+
45
+ - [-1, 1, Conv, [256, 3, 2]]
46
+ - [[-1, 17], 1, Concat, [1]] # cat head P4
47
+ - [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
48
+
49
+ - [-1, 1, Conv, [512, 3, 2]]
50
+ - [[-1, 14], 1, Concat, [1]] # cat head P5
51
+ - [-1, 3, C2, [768, False]] # 26 (P5/32-large)
52
+
53
+ - [-1, 1, Conv, [768, 3, 2]]
54
+ - [[-1, 11], 1, Concat, [1]] # cat head P6
55
+ - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
56
+
57
+ - [[20, 23, 26, 29], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5, P6)
ultralytics/models/v8/yolov8-pose.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8-pose keypoints/pose estimation model. For Usage examples see https://docs.ultralytics.com/tasks/pose
3
+
4
+ # Parameters
5
+ nc: 1 # number of classes
6
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
7
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'
8
+ # [depth, width, max_channels]
9
+ n: [0.33, 0.25, 1024]
10
+ s: [0.33, 0.50, 1024]
11
+ m: [0.67, 0.75, 768]
12
+ l: [1.00, 1.00, 512]
13
+ x: [1.00, 1.25, 512]
14
+
15
+ # YOLOv8.0n backbone
16
+ backbone:
17
+ # [from, repeats, module, args]
18
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
19
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
20
+ - [-1, 3, C2f, [128, True]]
21
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
22
+ - [-1, 6, C2f, [256, True]]
23
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
24
+ - [-1, 6, C2f, [512, True]]
25
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
26
+ - [-1, 3, C2f, [1024, True]]
27
+ - [-1, 1, SPPF, [1024, 5]] # 9
28
+
29
+ # YOLOv8.0n head
30
+ head:
31
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
32
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
33
+ - [-1, 3, C2f, [512]] # 12
34
+
35
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
36
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
37
+ - [-1, 3, C2f, [256]] # 15 (P3/8-small)
38
+
39
+ - [-1, 1, Conv, [256, 3, 2]]
40
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
41
+ - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
42
+
43
+ - [-1, 1, Conv, [512, 3, 2]]
44
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
45
+ - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
46
+
47
+ - [[15, 18, 21], 1, Pose, [nc, kpt_shape]] # Pose(P3, P4, P5)
ultralytics/models/v8/yolov8-seg.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024]
9
+ s: [0.33, 0.50, 1024]
10
+ m: [0.67, 0.75, 768]
11
+ l: [1.00, 1.00, 512]
12
+ x: [1.00, 1.25, 512]
13
+
14
+ # YOLOv8.0n backbone
15
+ backbone:
16
+ # [from, repeats, module, args]
17
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
18
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
19
+ - [-1, 3, C2f, [128, True]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
21
+ - [-1, 6, C2f, [256, True]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
23
+ - [-1, 6, C2f, [512, True]]
24
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
25
+ - [-1, 3, C2f, [1024, True]]
26
+ - [-1, 1, SPPF, [1024, 5]] # 9
27
+
28
+ # YOLOv8.0n head
29
+ head:
30
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
31
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
32
+ - [-1, 3, C2f, [512]] # 12
33
+
34
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
35
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
36
+ - [-1, 3, C2f, [256]] # 15 (P3/8-small)
37
+
38
+ - [-1, 1, Conv, [256, 3, 2]]
39
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
40
+ - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
41
+
42
+ - [-1, 1, Conv, [512, 3, 2]]
43
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
44
+ - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
45
+
46
+ - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
ultralytics/models/v8/yolov8.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
3
+
4
+ # Parameters
5
+ nc: 80 # number of classes
6
+ scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
7
+ # [depth, width, max_channels]
8
+ n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
9
+ s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
10
+ m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
11
+ l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
12
+ x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
13
+
14
+ # YOLOv8.0n backbone
15
+ backbone:
16
+ # [from, repeats, module, args]
17
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
18
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
19
+ - [-1, 3, C2f, [128, True]]
20
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
21
+ - [-1, 6, C2f, [256, True]]
22
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
23
+ - [-1, 6, C2f, [512, True]]
24
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
25
+ - [-1, 3, C2f, [1024, True]]
26
+ - [-1, 1, SPPF, [1024, 5]] # 9
27
+
28
+ # YOLOv8.0n head
29
+ head:
30
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
31
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
32
+ - [-1, 3, C2f, [512]] # 12
33
+
34
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
35
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
36
+ - [-1, 3, C2f, [256]] # 15 (P3/8-small)
37
+
38
+ - [-1, 1, Conv, [256, 3, 2]]
39
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
40
+ - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
41
+
42
+ - [-1, 1, Conv, [512, 3, 2]]
43
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
44
+ - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
45
+
46
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
ultralytics/nn/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ from .tasks import (BaseModel, ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight,
4
+ attempt_load_weights, guess_model_scale, guess_model_task, parse_model, torch_safe_load,
5
+ yaml_model_load)
6
+
7
+ __all__ = ('attempt_load_one_weight', 'attempt_load_weights', 'parse_model', 'yaml_model_load', 'guess_model_task',
8
+ 'guess_model_scale', 'torch_safe_load', 'DetectionModel', 'SegmentationModel', 'ClassificationModel',
9
+ 'BaseModel')
ultralytics/nn/autobackend.py ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import ast
4
+ import contextlib
5
+ import json
6
+ import platform
7
+ import zipfile
8
+ from collections import OrderedDict, namedtuple
9
+ from pathlib import Path
10
+ from urllib.parse import urlparse
11
+
12
+ import cv2
13
+ import numpy as np
14
+ import torch
15
+ import torch.nn as nn
16
+ from PIL import Image
17
+
18
+ from ultralytics.yolo.utils import LINUX, LOGGER, ROOT, yaml_load
19
+ from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version, check_yaml
20
+ from ultralytics.yolo.utils.downloads import attempt_download_asset, is_url
21
+ from ultralytics.yolo.utils.ops import xywh2xyxy
22
+
23
+
24
+ def check_class_names(names):
25
+ """Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts."""
26
+ if isinstance(names, list): # names is a list
27
+ names = dict(enumerate(names)) # convert to dict
28
+ if isinstance(names, dict):
29
+ # Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True'
30
+ names = {int(k): str(v) for k, v in names.items()}
31
+ n = len(names)
32
+ if max(names.keys()) >= n:
33
+ raise KeyError(f'{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices '
34
+ f'{min(names.keys())}-{max(names.keys())} defined in your dataset YAML.')
35
+ if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
36
+ map = yaml_load(ROOT / 'datasets/ImageNet.yaml')['map'] # human-readable names
37
+ names = {k: map[v] for k, v in names.items()}
38
+ return names
39
+
40
+
41
+ class AutoBackend(nn.Module):
42
+
43
+ def __init__(self,
44
+ weights='yolov8n.pt',
45
+ device=torch.device('cpu'),
46
+ dnn=False,
47
+ data=None,
48
+ fp16=False,
49
+ fuse=True,
50
+ verbose=True):
51
+ """
52
+ MultiBackend class for python inference on various platforms using Ultralytics YOLO.
53
+
54
+ Args:
55
+ weights (str): The path to the weights file. Default: 'yolov8n.pt'
56
+ device (torch.device): The device to run the model on.
57
+ dnn (bool): Use OpenCV's DNN module for inference if True, defaults to False.
58
+ data (str), (Path): Additional data.yaml file for class names, optional
59
+ fp16 (bool): If True, use half precision. Default: False
60
+ fuse (bool): Whether to fuse the model or not. Default: True
61
+ verbose (bool): Whether to run in verbose mode or not. Default: True
62
+
63
+ Supported formats and their naming conventions:
64
+ | Format | Suffix |
65
+ |-----------------------|------------------|
66
+ | PyTorch | *.pt |
67
+ | TorchScript | *.torchscript |
68
+ | ONNX Runtime | *.onnx |
69
+ | ONNX OpenCV DNN | *.onnx dnn=True |
70
+ | OpenVINO | *.xml |
71
+ | CoreML | *.mlmodel |
72
+ | TensorRT | *.engine |
73
+ | TensorFlow SavedModel | *_saved_model |
74
+ | TensorFlow GraphDef | *.pb |
75
+ | TensorFlow Lite | *.tflite |
76
+ | TensorFlow Edge TPU | *_edgetpu.tflite |
77
+ | PaddlePaddle | *_paddle_model |
78
+ """
79
+ super().__init__()
80
+ w = str(weights[0] if isinstance(weights, list) else weights)
81
+ nn_module = isinstance(weights, torch.nn.Module)
82
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
83
+ fp16 &= pt or jit or onnx or engine or nn_module or triton # FP16
84
+ nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
85
+ stride = 32 # default stride
86
+ model, metadata = None, None
87
+ cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
88
+ if not (pt or triton or nn_module):
89
+ w = attempt_download_asset(w) # download if not local
90
+
91
+ # NOTE: special case: in-memory pytorch model
92
+ if nn_module:
93
+ model = weights.to(device)
94
+ model = model.fuse(verbose=verbose) if fuse else model
95
+ if hasattr(model, 'kpt_shape'):
96
+ kpt_shape = model.kpt_shape # pose-only
97
+ stride = max(int(model.stride.max()), 32) # model stride
98
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
99
+ model.half() if fp16 else model.float()
100
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
101
+ pt = True
102
+ elif pt: # PyTorch
103
+ from ultralytics.nn.tasks import attempt_load_weights
104
+ model = attempt_load_weights(weights if isinstance(weights, list) else w,
105
+ device=device,
106
+ inplace=True,
107
+ fuse=fuse)
108
+ if hasattr(model, 'kpt_shape'):
109
+ kpt_shape = model.kpt_shape # pose-only
110
+ stride = max(int(model.stride.max()), 32) # model stride
111
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
112
+ model.half() if fp16 else model.float()
113
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
114
+ elif jit: # TorchScript
115
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
116
+ extra_files = {'config.txt': ''} # model metadata
117
+ model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
118
+ model.half() if fp16 else model.float()
119
+ if extra_files['config.txt']: # load metadata dict
120
+ metadata = json.loads(extra_files['config.txt'], object_hook=lambda x: dict(x.items()))
121
+ elif dnn: # ONNX OpenCV DNN
122
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
123
+ check_requirements('opencv-python>=4.5.4')
124
+ net = cv2.dnn.readNetFromONNX(w)
125
+ elif onnx: # ONNX Runtime
126
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
127
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
128
+ import onnxruntime
129
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
130
+ session = onnxruntime.InferenceSession(w, providers=providers)
131
+ output_names = [x.name for x in session.get_outputs()]
132
+ metadata = session.get_modelmeta().custom_metadata_map # metadata
133
+ elif xml: # OpenVINO
134
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
135
+ check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
136
+ from openvino.runtime import Core, Layout, get_batch # noqa
137
+ ie = Core()
138
+ w = Path(w)
139
+ if not w.is_file(): # if not *.xml
140
+ w = next(w.glob('*.xml')) # get *.xml file from *_openvino_model dir
141
+ network = ie.read_model(model=str(w), weights=w.with_suffix('.bin'))
142
+ if network.get_parameters()[0].get_layout().empty:
143
+ network.get_parameters()[0].set_layout(Layout('NCHW'))
144
+ batch_dim = get_batch(network)
145
+ if batch_dim.is_static:
146
+ batch_size = batch_dim.get_length()
147
+ executable_network = ie.compile_model(network, device_name='CPU') # device_name="MYRIAD" for NCS2
148
+ metadata = w.parent / 'metadata.yaml'
149
+ elif engine: # TensorRT
150
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
151
+ try:
152
+ import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
153
+ except ImportError:
154
+ if LINUX:
155
+ check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
156
+ import tensorrt as trt # noqa
157
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
158
+ if device.type == 'cpu':
159
+ device = torch.device('cuda:0')
160
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
161
+ logger = trt.Logger(trt.Logger.INFO)
162
+ # Read file
163
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
164
+ meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length
165
+ metadata = json.loads(f.read(meta_len).decode('utf-8')) # read metadata
166
+ model = runtime.deserialize_cuda_engine(f.read()) # read engine
167
+ context = model.create_execution_context()
168
+ bindings = OrderedDict()
169
+ output_names = []
170
+ fp16 = False # default updated below
171
+ dynamic = False
172
+ for i in range(model.num_bindings):
173
+ name = model.get_binding_name(i)
174
+ dtype = trt.nptype(model.get_binding_dtype(i))
175
+ if model.binding_is_input(i):
176
+ if -1 in tuple(model.get_binding_shape(i)): # dynamic
177
+ dynamic = True
178
+ context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
179
+ if dtype == np.float16:
180
+ fp16 = True
181
+ else: # output
182
+ output_names.append(name)
183
+ shape = tuple(context.get_binding_shape(i))
184
+ im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
185
+ bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
186
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
187
+ batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
188
+ elif coreml: # CoreML
189
+ LOGGER.info(f'Loading {w} for CoreML inference...')
190
+ import coremltools as ct
191
+ model = ct.models.MLModel(w)
192
+ metadata = dict(model.user_defined_metadata)
193
+ elif saved_model: # TF SavedModel
194
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
195
+ import tensorflow as tf
196
+ keras = False # assume TF1 saved_model
197
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
198
+ metadata = Path(w) / 'metadata.yaml'
199
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
200
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
201
+ import tensorflow as tf
202
+
203
+ from ultralytics.yolo.engine.exporter import gd_outputs
204
+
205
+ def wrap_frozen_graph(gd, inputs, outputs):
206
+ """Wrap frozen graphs for deployment."""
207
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), []) # wrapped
208
+ ge = x.graph.as_graph_element
209
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
210
+
211
+ gd = tf.Graph().as_graph_def() # TF GraphDef
212
+ with open(w, 'rb') as f:
213
+ gd.ParseFromString(f.read())
214
+ frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd))
215
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
216
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
217
+ from tflite_runtime.interpreter import Interpreter, load_delegate
218
+ except ImportError:
219
+ import tensorflow as tf
220
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
221
+ if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
222
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
223
+ delegate = {
224
+ 'Linux': 'libedgetpu.so.1',
225
+ 'Darwin': 'libedgetpu.1.dylib',
226
+ 'Windows': 'edgetpu.dll'}[platform.system()]
227
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
228
+ else: # TFLite
229
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
230
+ interpreter = Interpreter(model_path=w) # load TFLite model
231
+ interpreter.allocate_tensors() # allocate
232
+ input_details = interpreter.get_input_details() # inputs
233
+ output_details = interpreter.get_output_details() # outputs
234
+ # Load metadata
235
+ with contextlib.suppress(zipfile.BadZipFile):
236
+ with zipfile.ZipFile(w, 'r') as model:
237
+ meta_file = model.namelist()[0]
238
+ metadata = ast.literal_eval(model.read(meta_file).decode('utf-8'))
239
+ elif tfjs: # TF.js
240
+ raise NotImplementedError('YOLOv8 TF.js inference is not supported')
241
+ elif paddle: # PaddlePaddle
242
+ LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
243
+ check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
244
+ import paddle.inference as pdi # noqa
245
+ w = Path(w)
246
+ if not w.is_file(): # if not *.pdmodel
247
+ w = next(w.rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
248
+ config = pdi.Config(str(w), str(w.with_suffix('.pdiparams')))
249
+ if cuda:
250
+ config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
251
+ predictor = pdi.create_predictor(config)
252
+ input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
253
+ output_names = predictor.get_output_names()
254
+ metadata = w.parents[1] / 'metadata.yaml'
255
+ elif triton: # NVIDIA Triton Inference Server
256
+ LOGGER.info('Triton Inference Server not supported...')
257
+ '''
258
+ TODO:
259
+ check_requirements('tritonclient[all]')
260
+ from utils.triton import TritonRemoteModel
261
+ model = TritonRemoteModel(url=w)
262
+ nhwc = model.runtime.startswith("tensorflow")
263
+ '''
264
+ else:
265
+ from ultralytics.yolo.engine.exporter import export_formats
266
+ raise TypeError(f"model='{w}' is not a supported model format. "
267
+ 'See https://docs.ultralytics.com/modes/predict for help.'
268
+ f'\n\n{export_formats()}')
269
+
270
+ # Load external metadata YAML
271
+ if isinstance(metadata, (str, Path)) and Path(metadata).exists():
272
+ metadata = yaml_load(metadata)
273
+ if metadata:
274
+ for k, v in metadata.items():
275
+ if k in ('stride', 'batch'):
276
+ metadata[k] = int(v)
277
+ elif k in ('imgsz', 'names', 'kpt_shape') and isinstance(v, str):
278
+ metadata[k] = eval(v)
279
+ stride = metadata['stride']
280
+ task = metadata['task']
281
+ batch = metadata['batch']
282
+ imgsz = metadata['imgsz']
283
+ names = metadata['names']
284
+ kpt_shape = metadata.get('kpt_shape')
285
+ elif not (pt or triton or nn_module):
286
+ LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'")
287
+
288
+ # Check names
289
+ if 'names' not in locals(): # names missing
290
+ names = self._apply_default_class_names(data)
291
+ names = check_class_names(names)
292
+
293
+ self.__dict__.update(locals()) # assign all variables to self
294
+
295
+ def forward(self, im, augment=False, visualize=False):
296
+ """
297
+ Runs inference on the YOLOv8 MultiBackend model.
298
+
299
+ Args:
300
+ im (torch.Tensor): The image tensor to perform inference on.
301
+ augment (bool): whether to perform data augmentation during inference, defaults to False
302
+ visualize (bool): whether to visualize the output predictions, defaults to False
303
+
304
+ Returns:
305
+ (tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
306
+ """
307
+ b, ch, h, w = im.shape # batch, channel, height, width
308
+ if self.fp16 and im.dtype != torch.float16:
309
+ im = im.half() # to FP16
310
+ if self.nhwc:
311
+ im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
312
+
313
+ if self.pt or self.nn_module: # PyTorch
314
+ y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
315
+ elif self.jit: # TorchScript
316
+ y = self.model(im)
317
+ elif self.dnn: # ONNX OpenCV DNN
318
+ im = im.cpu().numpy() # torch to numpy
319
+ self.net.setInput(im)
320
+ y = self.net.forward()
321
+ elif self.onnx: # ONNX Runtime
322
+ im = im.cpu().numpy() # torch to numpy
323
+ y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
324
+ elif self.xml: # OpenVINO
325
+ im = im.cpu().numpy() # FP32
326
+ y = list(self.executable_network([im]).values())
327
+ elif self.engine: # TensorRT
328
+ if self.dynamic and im.shape != self.bindings['images'].shape:
329
+ i = self.model.get_binding_index('images')
330
+ self.context.set_binding_shape(i, im.shape) # reshape if dynamic
331
+ self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
332
+ for name in self.output_names:
333
+ i = self.model.get_binding_index(name)
334
+ self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
335
+ s = self.bindings['images'].shape
336
+ assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
337
+ self.binding_addrs['images'] = int(im.data_ptr())
338
+ self.context.execute_v2(list(self.binding_addrs.values()))
339
+ y = [self.bindings[x].data for x in sorted(self.output_names)]
340
+ elif self.coreml: # CoreML
341
+ im = im[0].cpu().numpy()
342
+ im_pil = Image.fromarray((im * 255).astype('uint8'))
343
+ # im = im.resize((192, 320), Image.ANTIALIAS)
344
+ y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized
345
+ if 'confidence' in y:
346
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
347
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
348
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
349
+ elif len(y) == 1: # classification model
350
+ y = list(y.values())
351
+ elif len(y) == 2: # segmentation model
352
+ y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
353
+ elif self.paddle: # PaddlePaddle
354
+ im = im.cpu().numpy().astype(np.float32)
355
+ self.input_handle.copy_from_cpu(im)
356
+ self.predictor.run()
357
+ y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
358
+ elif self.triton: # NVIDIA Triton Inference Server
359
+ y = self.model(im)
360
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
361
+ im = im.cpu().numpy()
362
+ if self.saved_model: # SavedModel
363
+ y = self.model(im, training=False) if self.keras else self.model(im)
364
+ if not isinstance(y, list):
365
+ y = [y]
366
+ elif self.pb: # GraphDef
367
+ y = self.frozen_func(x=self.tf.constant(im))
368
+ if len(y) == 2 and len(self.names) == 999: # segments and names not defined
369
+ ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
370
+ nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
371
+ self.names = {i: f'class{i}' for i in range(nc)}
372
+ else: # Lite or Edge TPU
373
+ input = self.input_details[0]
374
+ int8 = input['dtype'] == np.int8 # is TFLite quantized int8 model
375
+ if int8:
376
+ scale, zero_point = input['quantization']
377
+ im = (im / scale + zero_point).astype(np.int8) # de-scale
378
+ self.interpreter.set_tensor(input['index'], im)
379
+ self.interpreter.invoke()
380
+ y = []
381
+ for output in self.output_details:
382
+ x = self.interpreter.get_tensor(output['index'])
383
+ if int8:
384
+ scale, zero_point = output['quantization']
385
+ x = (x.astype(np.float32) - zero_point) * scale # re-scale
386
+ y.append(x)
387
+ # TF segment fixes: export is reversed vs ONNX export and protos are transposed
388
+ if len(y) == 2: # segment with (det, proto) output order reversed
389
+ if len(y[1].shape) != 4:
390
+ y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
391
+ y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
392
+ y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
393
+ # y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
394
+
395
+ # for x in y:
396
+ # print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
397
+ if isinstance(y, (list, tuple)):
398
+ return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
399
+ else:
400
+ return self.from_numpy(y)
401
+
402
+ def from_numpy(self, x):
403
+ """
404
+ Convert a numpy array to a tensor.
405
+
406
+ Args:
407
+ x (np.ndarray): The array to be converted.
408
+
409
+ Returns:
410
+ (torch.Tensor): The converted tensor
411
+ """
412
+ return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
413
+
414
+ def warmup(self, imgsz=(1, 3, 640, 640)):
415
+ """
416
+ Warm up the model by running one forward pass with a dummy input.
417
+
418
+ Args:
419
+ imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
420
+
421
+ Returns:
422
+ (None): This method runs the forward pass and don't return any value
423
+ """
424
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
425
+ if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
426
+ im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
427
+ for _ in range(2 if self.jit else 1): #
428
+ self.forward(im) # warmup
429
+
430
+ @staticmethod
431
+ def _apply_default_class_names(data):
432
+ """Applies default class names to an input YAML file or returns numerical class names."""
433
+ with contextlib.suppress(Exception):
434
+ return yaml_load(check_yaml(data))['names']
435
+ return {i: f'class{i}' for i in range(999)} # return default if above errors
436
+
437
+ @staticmethod
438
+ def _model_type(p='path/to/model.pt'):
439
+ """
440
+ This function takes a path to a model file and returns the model type
441
+
442
+ Args:
443
+ p: path to the model file. Defaults to path/to/model.pt
444
+ """
445
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
446
+ # types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
447
+ from ultralytics.yolo.engine.exporter import export_formats
448
+ sf = list(export_formats().Suffix) # export suffixes
449
+ if not is_url(p, check=False) and not isinstance(p, str):
450
+ check_suffix(p, sf) # checks
451
+ url = urlparse(p) # if url may be Triton inference server
452
+ types = [s in Path(p).name for s in sf]
453
+ types[8] &= not types[9] # tflite &= not edgetpu
454
+ triton = not any(types) and all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc])
455
+ return types + [triton]
ultralytics/nn/autoshape.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Common modules
4
+ """
5
+
6
+ from copy import copy
7
+ from pathlib import Path
8
+
9
+ import cv2
10
+ import numpy as np
11
+ import requests
12
+ import torch
13
+ import torch.nn as nn
14
+ from PIL import Image, ImageOps
15
+ from torch.cuda import amp
16
+
17
+ from ultralytics.nn.autobackend import AutoBackend
18
+ from ultralytics.yolo.data.augment import LetterBox
19
+ from ultralytics.yolo.utils import LOGGER, colorstr
20
+ from ultralytics.yolo.utils.files import increment_path
21
+ from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh
22
+ from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
23
+ from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode
24
+
25
+
26
+ class AutoShape(nn.Module):
27
+ """YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS."""
28
+ conf = 0.25 # NMS confidence threshold
29
+ iou = 0.45 # NMS IoU threshold
30
+ agnostic = False # NMS class-agnostic
31
+ multi_label = False # NMS multiple labels per box
32
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
33
+ max_det = 1000 # maximum number of detections per image
34
+ amp = False # Automatic Mixed Precision (AMP) inference
35
+
36
+ def __init__(self, model, verbose=True):
37
+ """Initializes object and copies attributes from model object."""
38
+ super().__init__()
39
+ if verbose:
40
+ LOGGER.info('Adding AutoShape... ')
41
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
42
+ self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance
43
+ self.pt = not self.dmb or model.pt # PyTorch model
44
+ self.model = model.eval()
45
+ if self.pt:
46
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
47
+ m.inplace = False # Detect.inplace=False for safe multithread inference
48
+ m.export = True # do not output loss values
49
+
50
+ def _apply(self, fn):
51
+ """Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers."""
52
+ self = super()._apply(fn)
53
+ if self.pt:
54
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
55
+ m.stride = fn(m.stride)
56
+ m.grid = list(map(fn, m.grid))
57
+ if isinstance(m.anchor_grid, list):
58
+ m.anchor_grid = list(map(fn, m.anchor_grid))
59
+ return self
60
+
61
+ @smart_inference_mode()
62
+ def forward(self, ims, size=640, augment=False, profile=False):
63
+ """Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:."""
64
+ # file: ims = 'data/images/zidane.jpg' # str or PosixPath
65
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
66
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
67
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
68
+ # numpy: = np.zeros((640,1280,3)) # HWC
69
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
70
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
71
+
72
+ dt = (Profile(), Profile(), Profile())
73
+ with dt[0]:
74
+ if isinstance(size, int): # expand
75
+ size = (size, size)
76
+ p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
77
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
78
+ if isinstance(ims, torch.Tensor): # torch
79
+ with amp.autocast(autocast):
80
+ return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
81
+
82
+ # Preprocess
83
+ n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
84
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
85
+ for i, im in enumerate(ims):
86
+ f = f'image{i}' # filename
87
+ if isinstance(im, (str, Path)): # filename or uri
88
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
89
+ im = np.asarray(ImageOps.exif_transpose(im))
90
+ elif isinstance(im, Image.Image): # PIL Image
91
+ im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f
92
+ files.append(Path(f).with_suffix('.jpg').name)
93
+ if im.shape[0] < 5: # image in CHW
94
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
95
+ im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
96
+ s = im.shape[:2] # HWC
97
+ shape0.append(s) # image shape
98
+ g = max(size) / max(s) # gain
99
+ shape1.append([y * g for y in s])
100
+ ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
101
+ shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape
102
+ x = [LetterBox(shape1, auto=False)(image=im)['img'] for im in ims] # pad
103
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
104
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
105
+
106
+ with amp.autocast(autocast):
107
+ # Inference
108
+ with dt[1]:
109
+ y = self.model(x, augment=augment) # forward
110
+
111
+ # Postprocess
112
+ with dt[2]:
113
+ y = non_max_suppression(y if self.dmb else y[0],
114
+ self.conf,
115
+ self.iou,
116
+ self.classes,
117
+ self.agnostic,
118
+ self.multi_label,
119
+ max_det=self.max_det) # NMS
120
+ for i in range(n):
121
+ scale_boxes(shape1, y[i][:, :4], shape0[i])
122
+
123
+ return Detections(ims, y, files, dt, self.names, x.shape)
124
+
125
+
126
+ class Detections:
127
+ # YOLOv8 detections class for inference results
128
+ def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
129
+ """Initialize object attributes for YOLO detection results."""
130
+ super().__init__()
131
+ d = pred[0].device # device
132
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
133
+ self.ims = ims # list of images as numpy arrays
134
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
135
+ self.names = names # class names
136
+ self.files = files # image filenames
137
+ self.times = times # profiling times
138
+ self.xyxy = pred # xyxy pixels
139
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
140
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
141
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
142
+ self.n = len(self.pred) # number of images (batch size)
143
+ self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
144
+ self.s = tuple(shape) # inference BCHW shape
145
+
146
+ def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
147
+ """Return performance metrics and optionally cropped/save images or results."""
148
+ s, crops = '', []
149
+ for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
150
+ s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
151
+ if pred.shape[0]:
152
+ for c in pred[:, -1].unique():
153
+ n = (pred[:, -1] == c).sum() # detections per class
154
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
155
+ s = s.rstrip(', ')
156
+ if show or save or render or crop:
157
+ annotator = Annotator(im, example=str(self.names))
158
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
159
+ label = f'{self.names[int(cls)]} {conf:.2f}'
160
+ if crop:
161
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
162
+ crops.append({
163
+ 'box': box,
164
+ 'conf': conf,
165
+ 'cls': cls,
166
+ 'label': label,
167
+ 'im': save_one_box(box, im, file=file, save=save)})
168
+ else: # all others
169
+ annotator.box_label(box, label if labels else '', color=colors(cls))
170
+ im = annotator.im
171
+ else:
172
+ s += '(no detections)'
173
+
174
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
175
+ if show:
176
+ im.show(self.files[i]) # show
177
+ if save:
178
+ f = self.files[i]
179
+ im.save(save_dir / f) # save
180
+ if i == self.n - 1:
181
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
182
+ if render:
183
+ self.ims[i] = np.asarray(im)
184
+ if pprint:
185
+ s = s.lstrip('\n')
186
+ return f'{s}\nSpeed: %.1fms preprocess, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
187
+ if crop:
188
+ if save:
189
+ LOGGER.info(f'Saved results to {save_dir}\n')
190
+ return crops
191
+
192
+ def show(self, labels=True):
193
+ """Displays YOLO results with detected bounding boxes."""
194
+ self._run(show=True, labels=labels) # show results
195
+
196
+ def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
197
+ """Save detection results with optional labels to specified directory."""
198
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
199
+ self._run(save=True, labels=labels, save_dir=save_dir) # save results
200
+
201
+ def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
202
+ """Crops images into detections and saves them if 'save' is True."""
203
+ save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
204
+ return self._run(crop=True, save=save, save_dir=save_dir) # crop results
205
+
206
+ def render(self, labels=True):
207
+ """Renders detected objects and returns images."""
208
+ self._run(render=True, labels=labels) # render results
209
+ return self.ims
210
+
211
+ def pandas(self):
212
+ """Return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])."""
213
+ import pandas
214
+ new = copy(self) # return copy
215
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
216
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
217
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
218
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
219
+ setattr(new, k, [pandas.DataFrame(x, columns=c) for x in a])
220
+ return new
221
+
222
+ def tolist(self):
223
+ """Return a list of Detections objects, i.e. 'for result in results.tolist():'."""
224
+ r = range(self.n) # iterable
225
+ x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
226
+ # for d in x:
227
+ # for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
228
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
229
+ return x
230
+
231
+ def print(self):
232
+ """Print the results of the `self._run()` function."""
233
+ LOGGER.info(self.__str__())
234
+
235
+ def __len__(self): # override len(results)
236
+ return self.n
237
+
238
+ def __str__(self): # override print(results)
239
+ return self._run(pprint=True) # print results
240
+
241
+ def __repr__(self):
242
+ """Returns a printable representation of the object."""
243
+ return f'YOLOv8 {self.__class__} instance\n' + self.__str__()
ultralytics/nn/modules/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Ultralytics modules. Visualize with:
4
+
5
+ from ultralytics.nn.modules import *
6
+ import torch
7
+ import os
8
+
9
+ x = torch.ones(1, 128, 40, 40)
10
+ m = Conv(128, 128)
11
+ f = f'{m._get_name()}.onnx'
12
+ torch.onnx.export(m, x, f)
13
+ os.system(f'onnxsim {f} {f} && open {f}')
14
+ """
15
+
16
+ from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck,
17
+ HGBlock, HGStem, Proto, RepC3)
18
+ from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus,
19
+ GhostConv, LightConv, RepConv, SpatialAttention)
20
+ from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
21
+ from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
22
+ MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
23
+
24
+ __all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus',
25
+ 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer',
26
+ 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3',
27
+ 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect',
28
+ 'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI',
29
+ 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
ultralytics/nn/modules/block.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Block modules
4
+ """
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
11
+ from .transformer import TransformerBlock
12
+
13
+ __all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
14
+ 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3')
15
+
16
+
17
+ class DFL(nn.Module):
18
+ """
19
+ Integral module of Distribution Focal Loss (DFL).
20
+ Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
21
+ """
22
+
23
+ def __init__(self, c1=16):
24
+ """Initialize a convolutional layer with a given number of input channels."""
25
+ super().__init__()
26
+ self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
27
+ x = torch.arange(c1, dtype=torch.float)
28
+ self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
29
+ self.c1 = c1
30
+
31
+ def forward(self, x):
32
+ """Applies a transformer layer on input tensor 'x' and returns a tensor."""
33
+ b, c, a = x.shape # batch, channels, anchors
34
+ return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
35
+ # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
36
+
37
+
38
+ class Proto(nn.Module):
39
+ """YOLOv8 mask Proto module for segmentation models."""
40
+
41
+ def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
42
+ super().__init__()
43
+ self.cv1 = Conv(c1, c_, k=3)
44
+ self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
45
+ self.cv2 = Conv(c_, c_, k=3)
46
+ self.cv3 = Conv(c_, c2)
47
+
48
+ def forward(self, x):
49
+ """Performs a forward pass through layers using an upsampled input image."""
50
+ return self.cv3(self.cv2(self.upsample(self.cv1(x))))
51
+
52
+
53
+ class HGStem(nn.Module):
54
+ """StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
55
+ https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
56
+ """
57
+
58
+ def __init__(self, c1, cm, c2):
59
+ super().__init__()
60
+ self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
61
+ self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
62
+ self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
63
+ self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
64
+ self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
65
+ self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
66
+
67
+ def forward(self, x):
68
+ """Forward pass of a PPHGNetV2 backbone layer."""
69
+ x = self.stem1(x)
70
+ x = F.pad(x, [0, 1, 0, 1])
71
+ x2 = self.stem2a(x)
72
+ x2 = F.pad(x2, [0, 1, 0, 1])
73
+ x2 = self.stem2b(x2)
74
+ x1 = self.pool(x)
75
+ x = torch.cat([x1, x2], dim=1)
76
+ x = self.stem3(x)
77
+ x = self.stem4(x)
78
+ return x
79
+
80
+
81
+ class HGBlock(nn.Module):
82
+ """HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
83
+ https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
84
+ """
85
+
86
+ def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
87
+ super().__init__()
88
+ block = LightConv if lightconv else Conv
89
+ self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
90
+ self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
91
+ self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
92
+ self.add = shortcut and c1 == c2
93
+
94
+ def forward(self, x):
95
+ """Forward pass of a PPHGNetV2 backbone layer."""
96
+ y = [x]
97
+ y.extend(m(y[-1]) for m in self.m)
98
+ y = self.ec(self.sc(torch.cat(y, 1)))
99
+ return y + x if self.add else y
100
+
101
+
102
+ class SPP(nn.Module):
103
+ """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
104
+
105
+ def __init__(self, c1, c2, k=(5, 9, 13)):
106
+ """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
107
+ super().__init__()
108
+ c_ = c1 // 2 # hidden channels
109
+ self.cv1 = Conv(c1, c_, 1, 1)
110
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
111
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
112
+
113
+ def forward(self, x):
114
+ """Forward pass of the SPP layer, performing spatial pyramid pooling."""
115
+ x = self.cv1(x)
116
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
117
+
118
+
119
+ class SPPF(nn.Module):
120
+ """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
121
+
122
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
123
+ super().__init__()
124
+ c_ = c1 // 2 # hidden channels
125
+ self.cv1 = Conv(c1, c_, 1, 1)
126
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
127
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
128
+
129
+ def forward(self, x):
130
+ """Forward pass through Ghost Convolution block."""
131
+ x = self.cv1(x)
132
+ y1 = self.m(x)
133
+ y2 = self.m(y1)
134
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
135
+
136
+
137
+ class C1(nn.Module):
138
+ """CSP Bottleneck with 1 convolution."""
139
+
140
+ def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
141
+ super().__init__()
142
+ self.cv1 = Conv(c1, c2, 1, 1)
143
+ self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
144
+
145
+ def forward(self, x):
146
+ """Applies cross-convolutions to input in the C3 module."""
147
+ y = self.cv1(x)
148
+ return self.m(y) + y
149
+
150
+
151
+ class C2(nn.Module):
152
+ """CSP Bottleneck with 2 convolutions."""
153
+
154
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
155
+ super().__init__()
156
+ self.c = int(c2 * e) # hidden channels
157
+ self.cv1 = Conv(c1, 2 * self.c, 1, 1)
158
+ self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
159
+ # self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
160
+ self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
161
+
162
+ def forward(self, x):
163
+ """Forward pass through the CSP bottleneck with 2 convolutions."""
164
+ a, b = self.cv1(x).chunk(2, 1)
165
+ return self.cv2(torch.cat((self.m(a), b), 1))
166
+
167
+
168
+ class C2f(nn.Module):
169
+ """CSP Bottleneck with 2 convolutions."""
170
+
171
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
172
+ super().__init__()
173
+ self.c = int(c2 * e) # hidden channels
174
+ self.cv1 = Conv(c1, 2 * self.c, 1, 1)
175
+ self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
176
+ self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
177
+
178
+ def forward(self, x):
179
+ """Forward pass through C2f layer."""
180
+ y = list(self.cv1(x).chunk(2, 1))
181
+ y.extend(m(y[-1]) for m in self.m)
182
+ return self.cv2(torch.cat(y, 1))
183
+
184
+ def forward_split(self, x):
185
+ """Forward pass using split() instead of chunk()."""
186
+ y = list(self.cv1(x).split((self.c, self.c), 1))
187
+ y.extend(m(y[-1]) for m in self.m)
188
+ return self.cv2(torch.cat(y, 1))
189
+
190
+
191
+ class C3(nn.Module):
192
+ """CSP Bottleneck with 3 convolutions."""
193
+
194
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
195
+ super().__init__()
196
+ c_ = int(c2 * e) # hidden channels
197
+ self.cv1 = Conv(c1, c_, 1, 1)
198
+ self.cv2 = Conv(c1, c_, 1, 1)
199
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
200
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
201
+
202
+ def forward(self, x):
203
+ """Forward pass through the CSP bottleneck with 2 convolutions."""
204
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
205
+
206
+
207
+ class C3x(C3):
208
+ """C3 module with cross-convolutions."""
209
+
210
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
211
+ """Initialize C3TR instance and set default parameters."""
212
+ super().__init__(c1, c2, n, shortcut, g, e)
213
+ self.c_ = int(c2 * e)
214
+ self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
215
+
216
+
217
+ class RepC3(nn.Module):
218
+ """Rep C3."""
219
+
220
+ def __init__(self, c1, c2, n=3, e=1.0):
221
+ super().__init__()
222
+ c_ = int(c2 * e) # hidden channels
223
+ self.cv1 = Conv(c1, c2, 1, 1)
224
+ self.cv2 = Conv(c1, c2, 1, 1)
225
+ self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
226
+ self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
227
+
228
+ def forward(self, x):
229
+ """Forward pass of RT-DETR neck layer."""
230
+ return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
231
+
232
+
233
+ class C3TR(C3):
234
+ """C3 module with TransformerBlock()."""
235
+
236
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
237
+ """Initialize C3Ghost module with GhostBottleneck()."""
238
+ super().__init__(c1, c2, n, shortcut, g, e)
239
+ c_ = int(c2 * e)
240
+ self.m = TransformerBlock(c_, c_, 4, n)
241
+
242
+
243
+ class C3Ghost(C3):
244
+ """C3 module with GhostBottleneck()."""
245
+
246
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
247
+ """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
248
+ super().__init__(c1, c2, n, shortcut, g, e)
249
+ c_ = int(c2 * e) # hidden channels
250
+ self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
251
+
252
+
253
+ class GhostBottleneck(nn.Module):
254
+ """Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
255
+
256
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
257
+ super().__init__()
258
+ c_ = c2 // 2
259
+ self.conv = nn.Sequential(
260
+ GhostConv(c1, c_, 1, 1), # pw
261
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
262
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
263
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
264
+ act=False)) if s == 2 else nn.Identity()
265
+
266
+ def forward(self, x):
267
+ """Applies skip connection and concatenation to input tensor."""
268
+ return self.conv(x) + self.shortcut(x)
269
+
270
+
271
+ class Bottleneck(nn.Module):
272
+ """Standard bottleneck."""
273
+
274
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
275
+ super().__init__()
276
+ c_ = int(c2 * e) # hidden channels
277
+ self.cv1 = Conv(c1, c_, k[0], 1)
278
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
279
+ self.add = shortcut and c1 == c2
280
+
281
+ def forward(self, x):
282
+ """'forward()' applies the YOLOv5 FPN to input data."""
283
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
284
+
285
+
286
+ class BottleneckCSP(nn.Module):
287
+ """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
288
+
289
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
290
+ super().__init__()
291
+ c_ = int(c2 * e) # hidden channels
292
+ self.cv1 = Conv(c1, c_, 1, 1)
293
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
294
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
295
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
296
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
297
+ self.act = nn.SiLU()
298
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
299
+
300
+ def forward(self, x):
301
+ """Applies a CSP bottleneck with 3 convolutions."""
302
+ y1 = self.cv3(self.m(self.cv1(x)))
303
+ y2 = self.cv2(x)
304
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
ultralytics/nn/modules/conv.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Convolution modules
4
+ """
5
+
6
+ import math
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+ __all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
13
+ 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
14
+
15
+
16
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
17
+ """Pad to 'same' shape outputs."""
18
+ if d > 1:
19
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
20
+ if p is None:
21
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
22
+ return p
23
+
24
+
25
+ class Conv(nn.Module):
26
+ """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
27
+ default_act = nn.SiLU() # default activation
28
+
29
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
30
+ """Initialize Conv layer with given arguments including activation."""
31
+ super().__init__()
32
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
33
+ self.bn = nn.BatchNorm2d(c2)
34
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
35
+
36
+ def forward(self, x):
37
+ """Apply convolution, batch normalization and activation to input tensor."""
38
+ return self.act(self.bn(self.conv(x)))
39
+
40
+ def forward_fuse(self, x):
41
+ """Perform transposed convolution of 2D data."""
42
+ return self.act(self.conv(x))
43
+
44
+
45
+ class Conv2(Conv):
46
+ """Simplified RepConv module with Conv fusing."""
47
+
48
+ def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
49
+ """Initialize Conv layer with given arguments including activation."""
50
+ super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
51
+ self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
52
+
53
+ def forward(self, x):
54
+ """Apply convolution, batch normalization and activation to input tensor."""
55
+ return self.act(self.bn(self.conv(x) + self.cv2(x)))
56
+
57
+ def fuse_convs(self):
58
+ """Fuse parallel convolutions."""
59
+ w = torch.zeros_like(self.conv.weight.data)
60
+ i = [x // 2 for x in w.shape[2:]]
61
+ w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()
62
+ self.conv.weight.data += w
63
+ self.__delattr__('cv2')
64
+
65
+
66
+ class LightConv(nn.Module):
67
+ """Light convolution with args(ch_in, ch_out, kernel).
68
+ https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
69
+ """
70
+
71
+ def __init__(self, c1, c2, k=1, act=nn.ReLU()):
72
+ """Initialize Conv layer with given arguments including activation."""
73
+ super().__init__()
74
+ self.conv1 = Conv(c1, c2, 1, act=False)
75
+ self.conv2 = DWConv(c2, c2, k, act=act)
76
+
77
+ def forward(self, x):
78
+ """Apply 2 convolutions to input tensor."""
79
+ return self.conv2(self.conv1(x))
80
+
81
+
82
+ class DWConv(Conv):
83
+ """Depth-wise convolution."""
84
+
85
+ def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
86
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
87
+
88
+
89
+ class DWConvTranspose2d(nn.ConvTranspose2d):
90
+ """Depth-wise transpose convolution."""
91
+
92
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
93
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
94
+
95
+
96
+ class ConvTranspose(nn.Module):
97
+ """Convolution transpose 2d layer."""
98
+ default_act = nn.SiLU() # default activation
99
+
100
+ def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
101
+ """Initialize ConvTranspose2d layer with batch normalization and activation function."""
102
+ super().__init__()
103
+ self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
104
+ self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
105
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
106
+
107
+ def forward(self, x):
108
+ """Applies transposed convolutions, batch normalization and activation to input."""
109
+ return self.act(self.bn(self.conv_transpose(x)))
110
+
111
+ def forward_fuse(self, x):
112
+ """Applies activation and convolution transpose operation to input."""
113
+ return self.act(self.conv_transpose(x))
114
+
115
+
116
+ class Focus(nn.Module):
117
+ """Focus wh information into c-space."""
118
+
119
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
120
+ super().__init__()
121
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
122
+ # self.contract = Contract(gain=2)
123
+
124
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
125
+ return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
126
+ # return self.conv(self.contract(x))
127
+
128
+
129
+ class GhostConv(nn.Module):
130
+ """Ghost Convolution https://github.com/huawei-noah/ghostnet."""
131
+
132
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
133
+ super().__init__()
134
+ c_ = c2 // 2 # hidden channels
135
+ self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
136
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
137
+
138
+ def forward(self, x):
139
+ """Forward propagation through a Ghost Bottleneck layer with skip connection."""
140
+ y = self.cv1(x)
141
+ return torch.cat((y, self.cv2(y)), 1)
142
+
143
+
144
+ class RepConv(nn.Module):
145
+ """RepConv is a basic rep-style block, including training and deploy status
146
+ This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
147
+ """
148
+ default_act = nn.SiLU() # default activation
149
+
150
+ def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
151
+ super().__init__()
152
+ assert k == 3 and p == 1
153
+ self.g = g
154
+ self.c1 = c1
155
+ self.c2 = c2
156
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
157
+
158
+ self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
159
+ self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
160
+ self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
161
+
162
+ def forward_fuse(self, x):
163
+ """Forward process"""
164
+ return self.act(self.conv(x))
165
+
166
+ def forward(self, x):
167
+ """Forward process"""
168
+ id_out = 0 if self.bn is None else self.bn(x)
169
+ return self.act(self.conv1(x) + self.conv2(x) + id_out)
170
+
171
+ def get_equivalent_kernel_bias(self):
172
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
173
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
174
+ kernelid, biasid = self._fuse_bn_tensor(self.bn)
175
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
176
+
177
+ def _avg_to_3x3_tensor(self, avgp):
178
+ channels = self.c1
179
+ groups = self.g
180
+ kernel_size = avgp.kernel_size
181
+ input_dim = channels // groups
182
+ k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
183
+ k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
184
+ return k
185
+
186
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
187
+ if kernel1x1 is None:
188
+ return 0
189
+ else:
190
+ return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
191
+
192
+ def _fuse_bn_tensor(self, branch):
193
+ if branch is None:
194
+ return 0, 0
195
+ if isinstance(branch, Conv):
196
+ kernel = branch.conv.weight
197
+ running_mean = branch.bn.running_mean
198
+ running_var = branch.bn.running_var
199
+ gamma = branch.bn.weight
200
+ beta = branch.bn.bias
201
+ eps = branch.bn.eps
202
+ elif isinstance(branch, nn.BatchNorm2d):
203
+ if not hasattr(self, 'id_tensor'):
204
+ input_dim = self.c1 // self.g
205
+ kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
206
+ for i in range(self.c1):
207
+ kernel_value[i, i % input_dim, 1, 1] = 1
208
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
209
+ kernel = self.id_tensor
210
+ running_mean = branch.running_mean
211
+ running_var = branch.running_var
212
+ gamma = branch.weight
213
+ beta = branch.bias
214
+ eps = branch.eps
215
+ std = (running_var + eps).sqrt()
216
+ t = (gamma / std).reshape(-1, 1, 1, 1)
217
+ return kernel * t, beta - running_mean * gamma / std
218
+
219
+ def fuse_convs(self):
220
+ if hasattr(self, 'conv'):
221
+ return
222
+ kernel, bias = self.get_equivalent_kernel_bias()
223
+ self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
224
+ out_channels=self.conv1.conv.out_channels,
225
+ kernel_size=self.conv1.conv.kernel_size,
226
+ stride=self.conv1.conv.stride,
227
+ padding=self.conv1.conv.padding,
228
+ dilation=self.conv1.conv.dilation,
229
+ groups=self.conv1.conv.groups,
230
+ bias=True).requires_grad_(False)
231
+ self.conv.weight.data = kernel
232
+ self.conv.bias.data = bias
233
+ for para in self.parameters():
234
+ para.detach_()
235
+ self.__delattr__('conv1')
236
+ self.__delattr__('conv2')
237
+ if hasattr(self, 'nm'):
238
+ self.__delattr__('nm')
239
+ if hasattr(self, 'bn'):
240
+ self.__delattr__('bn')
241
+ if hasattr(self, 'id_tensor'):
242
+ self.__delattr__('id_tensor')
243
+
244
+
245
+ class ChannelAttention(nn.Module):
246
+ """Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
247
+
248
+ def __init__(self, channels: int) -> None:
249
+ super().__init__()
250
+ self.pool = nn.AdaptiveAvgPool2d(1)
251
+ self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
252
+ self.act = nn.Sigmoid()
253
+
254
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
255
+ return x * self.act(self.fc(self.pool(x)))
256
+
257
+
258
+ class SpatialAttention(nn.Module):
259
+ """Spatial-attention module."""
260
+
261
+ def __init__(self, kernel_size=7):
262
+ """Initialize Spatial-attention module with kernel size argument."""
263
+ super().__init__()
264
+ assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
265
+ padding = 3 if kernel_size == 7 else 1
266
+ self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
267
+ self.act = nn.Sigmoid()
268
+
269
+ def forward(self, x):
270
+ """Apply channel and spatial attention on input for feature recalibration."""
271
+ return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
272
+
273
+
274
+ class CBAM(nn.Module):
275
+ """Convolutional Block Attention Module."""
276
+
277
+ def __init__(self, c1, kernel_size=7): # ch_in, kernels
278
+ super().__init__()
279
+ self.channel_attention = ChannelAttention(c1)
280
+ self.spatial_attention = SpatialAttention(kernel_size)
281
+
282
+ def forward(self, x):
283
+ """Applies the forward pass through C1 module."""
284
+ return self.spatial_attention(self.channel_attention(x))
285
+
286
+
287
+ class Concat(nn.Module):
288
+ """Concatenate a list of tensors along dimension."""
289
+
290
+ def __init__(self, dimension=1):
291
+ """Concatenates a list of tensors along a specified dimension."""
292
+ super().__init__()
293
+ self.d = dimension
294
+
295
+ def forward(self, x):
296
+ """Forward pass for the YOLOv8 mask Proto module."""
297
+ return torch.cat(x, self.d)
ultralytics/nn/modules/head.py ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Model head modules
4
+ """
5
+
6
+ import math
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.nn.init import constant_, xavier_uniform_
11
+
12
+ from ultralytics.yolo.utils.tal import dist2bbox, make_anchors
13
+
14
+ from .block import DFL, Proto
15
+ from .conv import Conv
16
+ from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
17
+ from .utils import bias_init_with_prob, linear_init_
18
+
19
+ __all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
20
+
21
+
22
+ class Detect(nn.Module):
23
+ """YOLOv8 Detect head for detection models."""
24
+ dynamic = False # force grid reconstruction
25
+ export = False # export mode
26
+ shape = None
27
+ anchors = torch.empty(0) # init
28
+ strides = torch.empty(0) # init
29
+
30
+ def __init__(self, nc=80, ch=()): # detection layer
31
+ super().__init__()
32
+ self.nc = nc # number of classes
33
+ self.nl = len(ch) # number of detection layers
34
+ self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
35
+ self.no = nc + self.reg_max * 4 # number of outputs per anchor
36
+ self.stride = torch.zeros(self.nl) # strides computed during build
37
+ c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc) # channels
38
+ self.cv2 = nn.ModuleList(
39
+ nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
40
+ self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
41
+ self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
42
+
43
+ def forward(self, x):
44
+ """Concatenates and returns predicted bounding boxes and class probabilities."""
45
+ shape = x[0].shape # BCHW
46
+ for i in range(self.nl):
47
+ x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
48
+ if self.training:
49
+ return x
50
+ elif self.dynamic or self.shape != shape:
51
+ self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
52
+ self.shape = shape
53
+
54
+ x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
55
+ if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops
56
+ box = x_cat[:, :self.reg_max * 4]
57
+ cls = x_cat[:, self.reg_max * 4:]
58
+ else:
59
+ box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
60
+ dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
61
+ y = torch.cat((dbox, cls.sigmoid()), 1)
62
+ return y if self.export else (y, x)
63
+
64
+ def bias_init(self):
65
+ """Initialize Detect() biases, WARNING: requires stride availability."""
66
+ m = self # self.model[-1] # Detect() module
67
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
68
+ # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
69
+ for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
70
+ a[-1].bias.data[:] = 1.0 # box
71
+ b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
72
+
73
+
74
+ class Segment(Detect):
75
+ """YOLOv8 Segment head for segmentation models."""
76
+
77
+ def __init__(self, nc=80, nm=32, npr=256, ch=()):
78
+ """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
79
+ super().__init__(nc, ch)
80
+ self.nm = nm # number of masks
81
+ self.npr = npr # number of protos
82
+ self.proto = Proto(ch[0], self.npr, self.nm) # protos
83
+ self.detect = Detect.forward
84
+
85
+ c4 = max(ch[0] // 4, self.nm)
86
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
87
+
88
+ def forward(self, x):
89
+ """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
90
+ p = self.proto(x[0]) # mask protos
91
+ bs = p.shape[0] # batch size
92
+
93
+ mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
94
+ x = self.detect(self, x)
95
+ if self.training:
96
+ return x, mc, p
97
+ return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
98
+
99
+
100
+ class Pose(Detect):
101
+ """YOLOv8 Pose head for keypoints models."""
102
+
103
+ def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
104
+ """Initialize YOLO network with default parameters and Convolutional Layers."""
105
+ super().__init__(nc, ch)
106
+ self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
107
+ self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
108
+ self.detect = Detect.forward
109
+
110
+ c4 = max(ch[0] // 4, self.nk)
111
+ self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
112
+
113
+ def forward(self, x):
114
+ """Perform forward pass through YOLO model and return predictions."""
115
+ bs = x[0].shape[0] # batch size
116
+ kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
117
+ x = self.detect(self, x)
118
+ if self.training:
119
+ return x, kpt
120
+ pred_kpt = self.kpts_decode(bs, kpt)
121
+ return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
122
+
123
+ def kpts_decode(self, bs, kpts):
124
+ """Decodes keypoints."""
125
+ ndim = self.kpt_shape[1]
126
+ if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
127
+ y = kpts.view(bs, *self.kpt_shape, -1)
128
+ a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
129
+ if ndim == 3:
130
+ a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
131
+ return a.view(bs, self.nk, -1)
132
+ else:
133
+ y = kpts.clone()
134
+ if ndim == 3:
135
+ y[:, 2::3].sigmoid_() # inplace sigmoid
136
+ y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
137
+ y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
138
+ return y
139
+
140
+
141
+ class Classify(nn.Module):
142
+ """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
143
+
144
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
145
+ super().__init__()
146
+ c_ = 1280 # efficientnet_b0 size
147
+ self.conv = Conv(c1, c_, k, s, p, g)
148
+ self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
149
+ self.drop = nn.Dropout(p=0.0, inplace=True)
150
+ self.linear = nn.Linear(c_, c2) # to x(b,c2)
151
+
152
+ def forward(self, x):
153
+ """Performs a forward pass of the YOLO model on input image data."""
154
+ if isinstance(x, list):
155
+ x = torch.cat(x, 1)
156
+ x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
157
+ return x if self.training else x.softmax(1)
158
+
159
+
160
+ class RTDETRDecoder(nn.Module):
161
+
162
+ def __init__(
163
+ self,
164
+ nc=80,
165
+ ch=(512, 1024, 2048),
166
+ hidden_dim=256,
167
+ num_queries=300,
168
+ strides=(8, 16, 32), # TODO
169
+ nl=3,
170
+ num_decoder_points=4,
171
+ nhead=8,
172
+ num_decoder_layers=6,
173
+ dim_feedforward=1024,
174
+ dropout=0.,
175
+ act=nn.ReLU(),
176
+ eval_idx=-1,
177
+ # training args
178
+ num_denoising=100,
179
+ label_noise_ratio=0.5,
180
+ box_noise_scale=1.0,
181
+ learnt_init_query=False):
182
+ super().__init__()
183
+ assert len(ch) <= nl
184
+ assert len(strides) == len(ch)
185
+ for _ in range(nl - len(strides)):
186
+ strides.append(strides[-1] * 2)
187
+
188
+ self.hidden_dim = hidden_dim
189
+ self.nhead = nhead
190
+ self.feat_strides = strides
191
+ self.nl = nl
192
+ self.nc = nc
193
+ self.num_queries = num_queries
194
+ self.num_decoder_layers = num_decoder_layers
195
+
196
+ # backbone feature projection
197
+ self._build_input_proj_layer(ch)
198
+
199
+ # Transformer module
200
+ decoder_layer = DeformableTransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, act, nl,
201
+ num_decoder_points)
202
+ self.decoder = DeformableTransformerDecoder(hidden_dim, decoder_layer, num_decoder_layers, eval_idx)
203
+
204
+ # denoising part
205
+ self.denoising_class_embed = nn.Embedding(nc, hidden_dim)
206
+ self.num_denoising = num_denoising
207
+ self.label_noise_ratio = label_noise_ratio
208
+ self.box_noise_scale = box_noise_scale
209
+
210
+ # decoder embedding
211
+ self.learnt_init_query = learnt_init_query
212
+ if learnt_init_query:
213
+ self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
214
+ self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
215
+
216
+ # encoder head
217
+ self.enc_output = nn.Sequential(nn.Linear(hidden_dim, hidden_dim), nn.LayerNorm(hidden_dim))
218
+ self.enc_score_head = nn.Linear(hidden_dim, nc)
219
+ self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
220
+
221
+ # decoder head
222
+ self.dec_score_head = nn.ModuleList([nn.Linear(hidden_dim, nc) for _ in range(num_decoder_layers)])
223
+ self.dec_bbox_head = nn.ModuleList([
224
+ MLP(hidden_dim, hidden_dim, 4, num_layers=3) for _ in range(num_decoder_layers)])
225
+
226
+ self._reset_parameters()
227
+
228
+ def forward(self, feats, gt_meta=None):
229
+ # input projection and embedding
230
+ memory, spatial_shapes, _ = self._get_encoder_input(feats)
231
+
232
+ # prepare denoising training
233
+ if self.training:
234
+ raise NotImplementedError
235
+ # denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
236
+ # get_contrastive_denoising_training_group(gt_meta,
237
+ # self.num_classes,
238
+ # self.num_queries,
239
+ # self.denoising_class_embed.weight,
240
+ # self.num_denoising,
241
+ # self.label_noise_ratio,
242
+ # self.box_noise_scale)
243
+ else:
244
+ denoising_class, denoising_bbox_unact, attn_mask = None, None, None
245
+
246
+ target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
247
+ self._get_decoder_input(memory, spatial_shapes, denoising_class, denoising_bbox_unact)
248
+
249
+ # decoder
250
+ out_bboxes, out_logits = self.decoder(target,
251
+ init_ref_points_unact,
252
+ memory,
253
+ spatial_shapes,
254
+ self.dec_bbox_head,
255
+ self.dec_score_head,
256
+ self.query_pos_head,
257
+ attn_mask=attn_mask)
258
+ if not self.training:
259
+ out_logits = out_logits.sigmoid_()
260
+ return out_bboxes, out_logits # enc_topk_bboxes, enc_topk_logits, dn_meta
261
+
262
+ def _reset_parameters(self):
263
+ # class and bbox head init
264
+ bias_cls = bias_init_with_prob(0.01)
265
+ linear_init_(self.enc_score_head)
266
+ constant_(self.enc_score_head.bias, bias_cls)
267
+ constant_(self.enc_bbox_head.layers[-1].weight, 0.)
268
+ constant_(self.enc_bbox_head.layers[-1].bias, 0.)
269
+ for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
270
+ linear_init_(cls_)
271
+ constant_(cls_.bias, bias_cls)
272
+ constant_(reg_.layers[-1].weight, 0.)
273
+ constant_(reg_.layers[-1].bias, 0.)
274
+
275
+ linear_init_(self.enc_output[0])
276
+ xavier_uniform_(self.enc_output[0].weight)
277
+ if self.learnt_init_query:
278
+ xavier_uniform_(self.tgt_embed.weight)
279
+ xavier_uniform_(self.query_pos_head.layers[0].weight)
280
+ xavier_uniform_(self.query_pos_head.layers[1].weight)
281
+ for layer in self.input_proj:
282
+ xavier_uniform_(layer[0].weight)
283
+
284
+ def _build_input_proj_layer(self, ch):
285
+ self.input_proj = nn.ModuleList()
286
+ for in_channels in ch:
287
+ self.input_proj.append(
288
+ nn.Sequential(nn.Conv2d(in_channels, self.hidden_dim, kernel_size=1, bias=False),
289
+ nn.BatchNorm2d(self.hidden_dim)))
290
+ in_channels = ch[-1]
291
+ for _ in range(self.nl - len(ch)):
292
+ self.input_proj.append(
293
+ nn.Sequential(nn.Conv2D(in_channels, self.hidden_dim, kernel_size=3, stride=2, padding=1, bias=False),
294
+ nn.BatchNorm2d(self.hidden_dim)))
295
+ in_channels = self.hidden_dim
296
+
297
+ def _generate_anchors(self, spatial_shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2):
298
+ anchors = []
299
+ for lvl, (h, w) in enumerate(spatial_shapes):
300
+ grid_y, grid_x = torch.meshgrid(torch.arange(end=h, dtype=torch.float32),
301
+ torch.arange(end=w, dtype=torch.float32),
302
+ indexing='ij')
303
+ grid_xy = torch.stack([grid_x, grid_y], -1)
304
+
305
+ valid_WH = torch.tensor([h, w]).to(torch.float32)
306
+ grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
307
+ wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
308
+ anchors.append(torch.concat([grid_xy, wh], -1).reshape([-1, h * w, 4]))
309
+
310
+ anchors = torch.concat(anchors, 1)
311
+ valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True)
312
+ anchors = torch.log(anchors / (1 - anchors))
313
+ anchors = torch.where(valid_mask, anchors, torch.inf)
314
+ return anchors.to(device=device, dtype=dtype), valid_mask.to(device=device)
315
+
316
+ def _get_encoder_input(self, feats):
317
+ # get projection features
318
+ proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
319
+ if self.nl > len(proj_feats):
320
+ len_srcs = len(proj_feats)
321
+ for i in range(len_srcs, self.nl):
322
+ if i == len_srcs:
323
+ proj_feats.append(self.input_proj[i](feats[-1]))
324
+ else:
325
+ proj_feats.append(self.input_proj[i](proj_feats[-1]))
326
+
327
+ # get encoder inputs
328
+ feat_flatten = []
329
+ spatial_shapes = []
330
+ level_start_index = [0]
331
+ for feat in proj_feats:
332
+ _, _, h, w = feat.shape
333
+ # [b, c, h, w] -> [b, h*w, c]
334
+ feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
335
+ # [nl, 2]
336
+ spatial_shapes.append([h, w])
337
+ # [l], start index of each level
338
+ level_start_index.append(h * w + level_start_index[-1])
339
+
340
+ # [b, l, c]
341
+ feat_flatten = torch.concat(feat_flatten, 1)
342
+ level_start_index.pop()
343
+ return feat_flatten, spatial_shapes, level_start_index
344
+
345
+ def _get_decoder_input(self, memory, spatial_shapes, denoising_class=None, denoising_bbox_unact=None):
346
+ bs, _, _ = memory.shape
347
+ # prepare input for decoder
348
+ anchors, valid_mask = self._generate_anchors(spatial_shapes, dtype=memory.dtype, device=memory.device)
349
+ memory = torch.where(valid_mask, memory, 0)
350
+ output_memory = self.enc_output(memory)
351
+
352
+ enc_outputs_class = self.enc_score_head(output_memory) # (bs, h*w, nc)
353
+ enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors # (bs, h*w, 4)
354
+
355
+ # (bs, topk)
356
+ _, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.num_queries, dim=1)
357
+ # extract region proposal boxes
358
+ # (bs, topk_ind)
359
+ batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
360
+ topk_ind = topk_ind.view(-1)
361
+
362
+ # Unsigmoided
363
+ reference_points_unact = enc_outputs_coord_unact[batch_ind, topk_ind].view(bs, self.num_queries, -1)
364
+
365
+ enc_topk_bboxes = torch.sigmoid(reference_points_unact)
366
+ if denoising_bbox_unact is not None:
367
+ reference_points_unact = torch.concat([denoising_bbox_unact, reference_points_unact], 1)
368
+ if self.training:
369
+ reference_points_unact = reference_points_unact.detach()
370
+ enc_topk_logits = enc_outputs_class[batch_ind, topk_ind].view(bs, self.num_queries, -1)
371
+
372
+ # extract region features
373
+ if self.learnt_init_query:
374
+ target = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
375
+ else:
376
+ target = output_memory[batch_ind, topk_ind].view(bs, self.num_queries, -1)
377
+ if self.training:
378
+ target = target.detach()
379
+ if denoising_class is not None:
380
+ target = torch.concat([denoising_class, target], 1)
381
+
382
+ return target, reference_points_unact, enc_topk_bboxes, enc_topk_logits
ultralytics/nn/modules/transformer.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Transformer modules
4
+ """
5
+
6
+ import math
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from torch.nn.init import constant_, xavier_uniform_
12
+
13
+ from .conv import Conv
14
+ from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
15
+
16
+ __all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
17
+ 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
18
+
19
+
20
+ class TransformerEncoderLayer(nn.Module):
21
+ """Transformer Encoder."""
22
+
23
+ def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
24
+ super().__init__()
25
+ self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
26
+ # Implementation of Feedforward model
27
+ self.fc1 = nn.Linear(c1, cm)
28
+ self.fc2 = nn.Linear(cm, c1)
29
+
30
+ self.norm1 = nn.LayerNorm(c1)
31
+ self.norm2 = nn.LayerNorm(c1)
32
+ self.dropout = nn.Dropout(dropout)
33
+ self.dropout1 = nn.Dropout(dropout)
34
+ self.dropout2 = nn.Dropout(dropout)
35
+
36
+ self.act = act
37
+ self.normalize_before = normalize_before
38
+
39
+ def with_pos_embed(self, tensor, pos=None):
40
+ """Add position embeddings if given."""
41
+ return tensor if pos is None else tensor + pos
42
+
43
+ def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
44
+ q = k = self.with_pos_embed(src, pos)
45
+ src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
46
+ src = src + self.dropout1(src2)
47
+ src = self.norm1(src)
48
+ src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
49
+ src = src + self.dropout2(src2)
50
+ src = self.norm2(src)
51
+ return src
52
+
53
+ def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
54
+ src2 = self.norm1(src)
55
+ q = k = self.with_pos_embed(src2, pos)
56
+ src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
57
+ src = src + self.dropout1(src2)
58
+ src2 = self.norm2(src)
59
+ src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
60
+ src = src + self.dropout2(src2)
61
+ return src
62
+
63
+ def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
64
+ """Forward propagates the input through the encoder module."""
65
+ if self.normalize_before:
66
+ return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
67
+ return self.forward_post(src, src_mask, src_key_padding_mask, pos)
68
+
69
+
70
+ class AIFI(TransformerEncoderLayer):
71
+
72
+ def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
73
+ super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
74
+
75
+ def forward(self, x):
76
+ c, h, w = x.shape[1:]
77
+ pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
78
+ # flatten [B, C, H, W] to [B, HxW, C]
79
+ x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
80
+ return x.permute((0, 2, 1)).view([-1, c, h, w])
81
+
82
+ @staticmethod
83
+ def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.):
84
+ grid_w = torch.arange(int(w), dtype=torch.float32)
85
+ grid_h = torch.arange(int(h), dtype=torch.float32)
86
+ grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
87
+ assert embed_dim % 4 == 0, \
88
+ 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
89
+ pos_dim = embed_dim // 4
90
+ omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
91
+ omega = 1. / (temperature ** omega)
92
+
93
+ out_w = grid_w.flatten()[..., None] @ omega[None]
94
+ out_h = grid_h.flatten()[..., None] @ omega[None]
95
+
96
+ return torch.concat([torch.sin(out_w), torch.cos(out_w),
97
+ torch.sin(out_h), torch.cos(out_h)], axis=1)[None, :, :]
98
+
99
+
100
+ class TransformerLayer(nn.Module):
101
+ """Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
102
+
103
+ def __init__(self, c, num_heads):
104
+ """Initializes a self-attention mechanism using linear transformations and multi-head attention."""
105
+ super().__init__()
106
+ self.q = nn.Linear(c, c, bias=False)
107
+ self.k = nn.Linear(c, c, bias=False)
108
+ self.v = nn.Linear(c, c, bias=False)
109
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
110
+ self.fc1 = nn.Linear(c, c, bias=False)
111
+ self.fc2 = nn.Linear(c, c, bias=False)
112
+
113
+ def forward(self, x):
114
+ """Apply a transformer block to the input x and return the output."""
115
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
116
+ x = self.fc2(self.fc1(x)) + x
117
+ return x
118
+
119
+
120
+ class TransformerBlock(nn.Module):
121
+ """Vision Transformer https://arxiv.org/abs/2010.11929."""
122
+
123
+ def __init__(self, c1, c2, num_heads, num_layers):
124
+ """Initialize a Transformer module with position embedding and specified number of heads and layers."""
125
+ super().__init__()
126
+ self.conv = None
127
+ if c1 != c2:
128
+ self.conv = Conv(c1, c2)
129
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
130
+ self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
131
+ self.c2 = c2
132
+
133
+ def forward(self, x):
134
+ """Forward propagates the input through the bottleneck module."""
135
+ if self.conv is not None:
136
+ x = self.conv(x)
137
+ b, _, w, h = x.shape
138
+ p = x.flatten(2).permute(2, 0, 1)
139
+ return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
140
+
141
+
142
+ class MLPBlock(nn.Module):
143
+
144
+ def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
145
+ super().__init__()
146
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
147
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
148
+ self.act = act()
149
+
150
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
151
+ return self.lin2(self.act(self.lin1(x)))
152
+
153
+
154
+ class MLP(nn.Module):
155
+ """ Very simple multi-layer perceptron (also called FFN)"""
156
+
157
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
158
+ super().__init__()
159
+ self.num_layers = num_layers
160
+ h = [hidden_dim] * (num_layers - 1)
161
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
162
+
163
+ def forward(self, x):
164
+ for i, layer in enumerate(self.layers):
165
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
166
+ return x
167
+
168
+
169
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
170
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
171
+ class LayerNorm2d(nn.Module):
172
+
173
+ def __init__(self, num_channels, eps=1e-6):
174
+ super().__init__()
175
+ self.weight = nn.Parameter(torch.ones(num_channels))
176
+ self.bias = nn.Parameter(torch.zeros(num_channels))
177
+ self.eps = eps
178
+
179
+ def forward(self, x):
180
+ u = x.mean(1, keepdim=True)
181
+ s = (x - u).pow(2).mean(1, keepdim=True)
182
+ x = (x - u) / torch.sqrt(s + self.eps)
183
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
184
+ return x
185
+
186
+
187
+ class MSDeformAttn(nn.Module):
188
+ """
189
+ Original Multi-Scale Deformable Attention Module.
190
+ https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
191
+ """
192
+
193
+ def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
194
+ super().__init__()
195
+ if d_model % n_heads != 0:
196
+ raise ValueError(f'd_model must be divisible by n_heads, but got {d_model} and {n_heads}')
197
+ _d_per_head = d_model // n_heads
198
+ # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
199
+ assert _d_per_head * n_heads == d_model, '`d_model` must be divisible by `n_heads`'
200
+
201
+ self.im2col_step = 64
202
+
203
+ self.d_model = d_model
204
+ self.n_levels = n_levels
205
+ self.n_heads = n_heads
206
+ self.n_points = n_points
207
+
208
+ self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
209
+ self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
210
+ self.value_proj = nn.Linear(d_model, d_model)
211
+ self.output_proj = nn.Linear(d_model, d_model)
212
+
213
+ self._reset_parameters()
214
+
215
+ def _reset_parameters(self):
216
+ constant_(self.sampling_offsets.weight.data, 0.)
217
+ thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
218
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
219
+ grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(
220
+ 1, self.n_levels, self.n_points, 1)
221
+ for i in range(self.n_points):
222
+ grid_init[:, :, i, :] *= i + 1
223
+ with torch.no_grad():
224
+ self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
225
+ constant_(self.attention_weights.weight.data, 0.)
226
+ constant_(self.attention_weights.bias.data, 0.)
227
+ xavier_uniform_(self.value_proj.weight.data)
228
+ constant_(self.value_proj.bias.data, 0.)
229
+ xavier_uniform_(self.output_proj.weight.data)
230
+ constant_(self.output_proj.bias.data, 0.)
231
+
232
+ def forward(self, query, reference_points, value, value_spatial_shapes, value_mask=None):
233
+ """
234
+ https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
235
+ Args:
236
+ query (Tensor): [bs, query_length, C]
237
+ reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
238
+ bottom-right (1, 1), including padding area
239
+ value (Tensor): [bs, value_length, C]
240
+ value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
241
+ value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
242
+
243
+ Returns:
244
+ output (Tensor): [bs, Length_{query}, C]
245
+ """
246
+ bs, len_q = query.shape[:2]
247
+ _, len_v = value.shape[:2]
248
+ assert sum(s[0] * s[1] for s in value_spatial_shapes) == len_v
249
+
250
+ value = self.value_proj(value)
251
+ if value_mask is not None:
252
+ value = value.masked_fill(value_mask[..., None], float(0))
253
+ value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
254
+ sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
255
+ attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
256
+ attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
257
+ # N, Len_q, n_heads, n_levels, n_points, 2
258
+ n = reference_points.shape[-1]
259
+ if n == 2:
260
+ offset_normalizer = torch.as_tensor(value_spatial_shapes, dtype=query.dtype, device=query.device).flip(-1)
261
+ add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
262
+ sampling_locations = reference_points[:, :, None, :, None, :] + add
263
+
264
+ elif n == 4:
265
+ add = sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
266
+ sampling_locations = reference_points[:, :, None, :, None, :2] + add
267
+ else:
268
+ raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {n}.')
269
+ output = multi_scale_deformable_attn_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights)
270
+ output = self.output_proj(output)
271
+ return output
272
+
273
+
274
+ class DeformableTransformerDecoderLayer(nn.Module):
275
+ """
276
+ https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
277
+ https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
278
+ """
279
+
280
+ def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0., act=nn.ReLU(), n_levels=4, n_points=4):
281
+ super().__init__()
282
+
283
+ # self attention
284
+ self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
285
+ self.dropout1 = nn.Dropout(dropout)
286
+ self.norm1 = nn.LayerNorm(d_model)
287
+
288
+ # cross attention
289
+ self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
290
+ self.dropout2 = nn.Dropout(dropout)
291
+ self.norm2 = nn.LayerNorm(d_model)
292
+
293
+ # ffn
294
+ self.linear1 = nn.Linear(d_model, d_ffn)
295
+ self.act = act
296
+ self.dropout3 = nn.Dropout(dropout)
297
+ self.linear2 = nn.Linear(d_ffn, d_model)
298
+ self.dropout4 = nn.Dropout(dropout)
299
+ self.norm3 = nn.LayerNorm(d_model)
300
+
301
+ @staticmethod
302
+ def with_pos_embed(tensor, pos):
303
+ return tensor if pos is None else tensor + pos
304
+
305
+ def forward_ffn(self, tgt):
306
+ tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
307
+ tgt = tgt + self.dropout4(tgt2)
308
+ tgt = self.norm3(tgt)
309
+ return tgt
310
+
311
+ def forward(self,
312
+ tgt,
313
+ reference_points,
314
+ src,
315
+ src_spatial_shapes,
316
+ src_padding_mask=None,
317
+ attn_mask=None,
318
+ query_pos=None):
319
+ # self attention
320
+ q = k = self.with_pos_embed(tgt, query_pos)
321
+ if attn_mask is not None:
322
+ attn_mask = torch.where(attn_mask.astype('bool'), torch.zeros(attn_mask.shape, tgt.dtype),
323
+ torch.full(attn_mask.shape, float('-inf'), tgt.dtype))
324
+ tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1)
325
+ tgt = tgt + self.dropout1(tgt2)
326
+ tgt = self.norm1(tgt)
327
+
328
+ # cross attention
329
+ tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos), reference_points, src, src_spatial_shapes,
330
+ src_padding_mask)
331
+ tgt = tgt + self.dropout2(tgt2)
332
+ tgt = self.norm2(tgt)
333
+
334
+ # ffn
335
+ tgt = self.forward_ffn(tgt)
336
+
337
+ return tgt
338
+
339
+
340
+ class DeformableTransformerDecoder(nn.Module):
341
+ """
342
+ https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
343
+ """
344
+
345
+ def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
346
+ super().__init__()
347
+ self.layers = _get_clones(decoder_layer, num_layers)
348
+ self.num_layers = num_layers
349
+ self.hidden_dim = hidden_dim
350
+ self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
351
+
352
+ def forward(self,
353
+ tgt,
354
+ reference_points,
355
+ src,
356
+ src_spatial_shapes,
357
+ bbox_head,
358
+ score_head,
359
+ query_pos_head,
360
+ attn_mask=None,
361
+ src_padding_mask=None):
362
+ output = tgt
363
+ dec_out_bboxes = []
364
+ dec_out_logits = []
365
+ ref_points = None
366
+ ref_points_detach = torch.sigmoid(reference_points)
367
+ for i, layer in enumerate(self.layers):
368
+ ref_points_input = ref_points_detach.unsqueeze(2)
369
+ query_pos_embed = query_pos_head(ref_points_detach)
370
+ output = layer(output, ref_points_input, src, src_spatial_shapes, src_padding_mask, attn_mask,
371
+ query_pos_embed)
372
+
373
+ inter_ref_bbox = torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
374
+
375
+ if self.training:
376
+ dec_out_logits.append(score_head[i](output))
377
+ if i == 0:
378
+ dec_out_bboxes.append(inter_ref_bbox)
379
+ else:
380
+ dec_out_bboxes.append(torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
381
+ elif i == self.eval_idx:
382
+ dec_out_logits.append(score_head[i](output))
383
+ dec_out_bboxes.append(inter_ref_bbox)
384
+ break
385
+
386
+ ref_points = inter_ref_bbox
387
+ ref_points_detach = inter_ref_bbox.detach() if self.training else inter_ref_bbox
388
+
389
+ return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
ultralytics/nn/modules/utils.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Module utils
4
+ """
5
+
6
+ import copy
7
+ import math
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from torch.nn.init import uniform_
14
+
15
+ __all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'
16
+
17
+
18
+ def _get_clones(module, n):
19
+ return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
20
+
21
+
22
+ def bias_init_with_prob(prior_prob=0.01):
23
+ """initialize conv/fc bias value according to a given probability value."""
24
+ return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
25
+
26
+
27
+ def linear_init_(module):
28
+ bound = 1 / math.sqrt(module.weight.shape[0])
29
+ uniform_(module.weight, -bound, bound)
30
+ if hasattr(module, 'bias') and module.bias is not None:
31
+ uniform_(module.bias, -bound, bound)
32
+
33
+
34
+ def inverse_sigmoid(x, eps=1e-5):
35
+ x = x.clamp(min=0, max=1)
36
+ x1 = x.clamp(min=eps)
37
+ x2 = (1 - x).clamp(min=eps)
38
+ return torch.log(x1 / x2)
39
+
40
+
41
+ def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shapes: torch.Tensor,
42
+ sampling_locations: torch.Tensor,
43
+ attention_weights: torch.Tensor) -> torch.Tensor:
44
+ """
45
+ Multi-scale deformable attention.
46
+ https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
47
+ """
48
+
49
+ bs, _, num_heads, embed_dims = value.shape
50
+ _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
51
+ value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
52
+ sampling_grids = 2 * sampling_locations - 1
53
+ sampling_value_list = []
54
+ for level, (H_, W_) in enumerate(value_spatial_shapes):
55
+ # bs, H_*W_, num_heads, embed_dims ->
56
+ # bs, H_*W_, num_heads*embed_dims ->
57
+ # bs, num_heads*embed_dims, H_*W_ ->
58
+ # bs*num_heads, embed_dims, H_, W_
59
+ value_l_ = (value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_))
60
+ # bs, num_queries, num_heads, num_points, 2 ->
61
+ # bs, num_heads, num_queries, num_points, 2 ->
62
+ # bs*num_heads, num_queries, num_points, 2
63
+ sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
64
+ # bs*num_heads, embed_dims, num_queries, num_points
65
+ sampling_value_l_ = F.grid_sample(value_l_,
66
+ sampling_grid_l_,
67
+ mode='bilinear',
68
+ padding_mode='zeros',
69
+ align_corners=False)
70
+ sampling_value_list.append(sampling_value_l_)
71
+ # (bs, num_queries, num_heads, num_levels, num_points) ->
72
+ # (bs, num_heads, num_queries, num_levels, num_points) ->
73
+ # (bs, num_heads, 1, num_queries, num_levels*num_points)
74
+ attention_weights = attention_weights.transpose(1, 2).reshape(bs * num_heads, 1, num_queries,
75
+ num_levels * num_points)
76
+ output = ((torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(
77
+ bs, num_heads * embed_dims, num_queries))
78
+ return output.transpose(1, 2).contiguous()
ultralytics/nn/tasks.py ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ import contextlib
4
+ from copy import deepcopy
5
+ from pathlib import Path
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+ from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
11
+ Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
12
+ Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
13
+ RTDETRDecoder, Segment)
14
+ from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
15
+ from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_yaml
16
+ from ultralytics.yolo.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
17
+ from ultralytics.yolo.utils.plotting import feature_visualization
18
+ from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights,
19
+ intersect_dicts, make_divisible, model_info, scale_img, time_sync)
20
+
21
+ try:
22
+ import thop
23
+ except ImportError:
24
+ thop = None
25
+
26
+
27
+ class BaseModel(nn.Module):
28
+ """
29
+ The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
30
+ """
31
+
32
+ def forward(self, x, *args, **kwargs):
33
+ """
34
+ Forward pass of the model on a single scale.
35
+ Wrapper for `_forward_once` method.
36
+
37
+ Args:
38
+ x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.
39
+
40
+ Returns:
41
+ (torch.Tensor): The output of the network.
42
+ """
43
+ if isinstance(x, dict): # for cases of training and validating while training.
44
+ return self.loss(x, *args, **kwargs)
45
+ return self.predict(x, *args, **kwargs)
46
+
47
+ def predict(self, x, profile=False, visualize=False, augment=False):
48
+ """
49
+ Perform a forward pass through the network.
50
+
51
+ Args:
52
+ x (torch.Tensor): The input tensor to the model.
53
+ profile (bool): Print the computation time of each layer if True, defaults to False.
54
+ visualize (bool): Save the feature maps of the model if True, defaults to False.
55
+ augment (bool): Augment image during prediction, defaults to False.
56
+
57
+ Returns:
58
+ (torch.Tensor): The last output of the model.
59
+ """
60
+ if augment:
61
+ return self._predict_augment(x)
62
+ return self._predict_once(x, profile, visualize)
63
+
64
+ def _predict_once(self, x, profile=False, visualize=False):
65
+ """
66
+ Perform a forward pass through the network.
67
+
68
+ Args:
69
+ x (torch.Tensor): The input tensor to the model.
70
+ profile (bool): Print the computation time of each layer if True, defaults to False.
71
+ visualize (bool): Save the feature maps of the model if True, defaults to False.
72
+
73
+ Returns:
74
+ (torch.Tensor): The last output of the model.
75
+ """
76
+ y, dt = [], [] # outputs
77
+ for m in self.model:
78
+ if m.f != -1: # if not from previous layer
79
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
80
+ if profile:
81
+ self._profile_one_layer(m, x, dt)
82
+ x = m(x) # run
83
+ y.append(x if m.i in self.save else None) # save output
84
+ if visualize:
85
+ feature_visualization(x, m.type, m.i, save_dir=visualize)
86
+ return x
87
+
88
+ def _predict_augment(self, x):
89
+ """Perform augmentations on input image x and return augmented inference."""
90
+ LOGGER.warning(
91
+ f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.'
92
+ )
93
+ return self._predict_once(x)
94
+
95
+ def _profile_one_layer(self, m, x, dt):
96
+ """
97
+ Profile the computation time and FLOPs of a single layer of the model on a given input.
98
+ Appends the results to the provided list.
99
+
100
+ Args:
101
+ m (nn.Module): The layer to be profiled.
102
+ x (torch.Tensor): The input data to the layer.
103
+ dt (list): A list to store the computation time of the layer.
104
+
105
+ Returns:
106
+ None
107
+ """
108
+ c = m == self.model[-1] # is final layer, copy input as inplace fix
109
+ o = thop.profile(m, inputs=[x.clone() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
110
+ t = time_sync()
111
+ for _ in range(10):
112
+ m(x.clone() if c else x)
113
+ dt.append((time_sync() - t) * 100)
114
+ if m == self.model[0]:
115
+ LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
116
+ LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
117
+ if c:
118
+ LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
119
+
120
+ def fuse(self, verbose=True):
121
+ """
122
+ Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
123
+ computation efficiency.
124
+
125
+ Returns:
126
+ (nn.Module): The fused model is returned.
127
+ """
128
+ if not self.is_fused():
129
+ for m in self.model.modules():
130
+ if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
131
+ if isinstance(m, Conv2):
132
+ m.fuse_convs()
133
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
134
+ delattr(m, 'bn') # remove batchnorm
135
+ m.forward = m.forward_fuse # update forward
136
+ if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
137
+ m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
138
+ delattr(m, 'bn') # remove batchnorm
139
+ m.forward = m.forward_fuse # update forward
140
+ if isinstance(m, RepConv):
141
+ m.fuse_convs()
142
+ m.forward = m.forward_fuse # update forward
143
+ self.info(verbose=verbose)
144
+
145
+ return self
146
+
147
+ def is_fused(self, thresh=10):
148
+ """
149
+ Check if the model has less than a certain threshold of BatchNorm layers.
150
+
151
+ Args:
152
+ thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.
153
+
154
+ Returns:
155
+ (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
156
+ """
157
+ bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d()
158
+ return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model
159
+
160
+ def info(self, detailed=False, verbose=True, imgsz=640):
161
+ """
162
+ Prints model information
163
+
164
+ Args:
165
+ verbose (bool): if True, prints out the model information. Defaults to False
166
+ imgsz (int): the size of the image that the model will be trained on. Defaults to 640
167
+ """
168
+ return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)
169
+
170
+ def _apply(self, fn):
171
+ """
172
+ `_apply()` is a function that applies a function to all the tensors in the model that are not
173
+ parameters or registered buffers
174
+
175
+ Args:
176
+ fn: the function to apply to the model
177
+
178
+ Returns:
179
+ A model that is a Detect() object.
180
+ """
181
+ self = super()._apply(fn)
182
+ m = self.model[-1] # Detect()
183
+ if isinstance(m, (Detect, Segment)):
184
+ m.stride = fn(m.stride)
185
+ m.anchors = fn(m.anchors)
186
+ m.strides = fn(m.strides)
187
+ return self
188
+
189
+ def load(self, weights, verbose=True):
190
+ """Load the weights into the model.
191
+
192
+ Args:
193
+ weights (dict) or (torch.nn.Module): The pre-trained weights to be loaded.
194
+ verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
195
+ """
196
+ model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts
197
+ csd = model.float().state_dict() # checkpoint state_dict as FP32
198
+ csd = intersect_dicts(csd, self.state_dict()) # intersect
199
+ self.load_state_dict(csd, strict=False) # load
200
+ if verbose:
201
+ LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')
202
+
203
+ def loss(self, batch, preds=None):
204
+ """
205
+ Compute loss
206
+
207
+ Args:
208
+ batch (dict): Batch to compute loss on
209
+ preds (torch.Tensor | List[torch.Tensor]): Predictions.
210
+ """
211
+ if not hasattr(self, 'criterion'):
212
+ self.criterion = self.init_criterion()
213
+ return self.criterion(self.predict(batch['img']) if preds is None else preds, batch)
214
+
215
+ def init_criterion(self):
216
+ raise NotImplementedError('compute_loss() needs to be implemented by task heads')
217
+
218
+
219
+ class DetectionModel(BaseModel):
220
+ """YOLOv8 detection model."""
221
+
222
+ def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes
223
+ super().__init__()
224
+ self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
225
+
226
+ # Define model
227
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
228
+ if nc and nc != self.yaml['nc']:
229
+ LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
230
+ self.yaml['nc'] = nc # override yaml value
231
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
232
+ self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
233
+ self.inplace = self.yaml.get('inplace', True)
234
+
235
+ # Build strides
236
+ m = self.model[-1] # Detect()
237
+ if isinstance(m, (Detect, Segment, Pose)):
238
+ s = 256 # 2x min stride
239
+ m.inplace = self.inplace
240
+ forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x)
241
+ m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
242
+ self.stride = m.stride
243
+ m.bias_init() # only run once
244
+
245
+ # Init weights, biases
246
+ initialize_weights(self)
247
+ if verbose:
248
+ self.info()
249
+ LOGGER.info('')
250
+
251
+ def _predict_augment(self, x):
252
+ """Perform augmentations on input image x and return augmented inference and train outputs."""
253
+ img_size = x.shape[-2:] # height, width
254
+ s = [1, 0.83, 0.67] # scales
255
+ f = [None, 3, None] # flips (2-ud, 3-lr)
256
+ y = [] # outputs
257
+ for si, fi in zip(s, f):
258
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
259
+ yi = super().predict(xi)[0] # forward
260
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
261
+ yi = self._descale_pred(yi, fi, si, img_size)
262
+ y.append(yi)
263
+ y = self._clip_augmented(y) # clip augmented tails
264
+ return torch.cat(y, -1), None # augmented inference, train
265
+
266
+ @staticmethod
267
+ def _descale_pred(p, flips, scale, img_size, dim=1):
268
+ """De-scale predictions following augmented inference (inverse operation)."""
269
+ p[:, :4] /= scale # de-scale
270
+ x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
271
+ if flips == 2:
272
+ y = img_size[0] - y # de-flip ud
273
+ elif flips == 3:
274
+ x = img_size[1] - x # de-flip lr
275
+ return torch.cat((x, y, wh, cls), dim)
276
+
277
+ def _clip_augmented(self, y):
278
+ """Clip YOLOv5 augmented inference tails."""
279
+ nl = self.model[-1].nl # number of detection layers (P3-P5)
280
+ g = sum(4 ** x for x in range(nl)) # grid points
281
+ e = 1 # exclude layer count
282
+ i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices
283
+ y[0] = y[0][..., :-i] # large
284
+ i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
285
+ y[-1] = y[-1][..., i:] # small
286
+ return y
287
+
288
+ def init_criterion(self):
289
+ return v8DetectionLoss(self)
290
+
291
+
292
+ class SegmentationModel(DetectionModel):
293
+ """YOLOv8 segmentation model."""
294
+
295
+ def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
296
+ """Initialize YOLOv8 segmentation model with given config and parameters."""
297
+ super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
298
+
299
+ def init_criterion(self):
300
+ return v8SegmentationLoss(self)
301
+
302
+ def _predict_augment(self, x):
303
+ """Perform augmentations on input image x and return augmented inference."""
304
+ LOGGER.warning(
305
+ f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.'
306
+ )
307
+ return self._predict_once(x)
308
+
309
+
310
+ class PoseModel(DetectionModel):
311
+ """YOLOv8 pose model."""
312
+
313
+ def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
314
+ """Initialize YOLOv8 Pose model."""
315
+ if not isinstance(cfg, dict):
316
+ cfg = yaml_model_load(cfg) # load model YAML
317
+ if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']):
318
+ LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
319
+ cfg['kpt_shape'] = data_kpt_shape
320
+ super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
321
+
322
+ def init_criterion(self):
323
+ return v8PoseLoss(self)
324
+
325
+ def _predict_augment(self, x):
326
+ """Perform augmentations on input image x and return augmented inference."""
327
+ LOGGER.warning(
328
+ f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.'
329
+ )
330
+ return self._predict_once(x)
331
+
332
+
333
+ class ClassificationModel(BaseModel):
334
+ """YOLOv8 classification model."""
335
+
336
+ def __init__(self,
337
+ cfg=None,
338
+ model=None,
339
+ ch=3,
340
+ nc=None,
341
+ cutoff=10,
342
+ verbose=True): # yaml, model, channels, number of classes, cutoff index, verbose flag
343
+ super().__init__()
344
+ self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose)
345
+
346
+ def _from_detection_model(self, model, nc=1000, cutoff=10):
347
+ """Create a YOLOv5 classification model from a YOLOv5 detection model."""
348
+ from ultralytics.nn.autobackend import AutoBackend
349
+ if isinstance(model, AutoBackend):
350
+ model = model.model # unwrap DetectMultiBackend
351
+ model.model = model.model[:cutoff] # backbone
352
+ m = model.model[-1] # last layer
353
+ ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
354
+ c = Classify(ch, nc) # Classify()
355
+ c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
356
+ model.model[-1] = c # replace
357
+ self.model = model.model
358
+ self.stride = model.stride
359
+ self.save = []
360
+ self.nc = nc
361
+
362
+ def _from_yaml(self, cfg, ch, nc, verbose):
363
+ """Set YOLOv8 model configurations and define the model architecture."""
364
+ self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
365
+
366
+ # Define model
367
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
368
+ if nc and nc != self.yaml['nc']:
369
+ LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
370
+ self.yaml['nc'] = nc # override yaml value
371
+ elif not nc and not self.yaml.get('nc', None):
372
+ raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.')
373
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
374
+ self.stride = torch.Tensor([1]) # no stride constraints
375
+ self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
376
+ self.info()
377
+
378
+ @staticmethod
379
+ def reshape_outputs(model, nc):
380
+ """Update a TorchVision classification model to class count 'n' if required."""
381
+ name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
382
+ if isinstance(m, Classify): # YOLO Classify() head
383
+ if m.linear.out_features != nc:
384
+ m.linear = nn.Linear(m.linear.in_features, nc)
385
+ elif isinstance(m, nn.Linear): # ResNet, EfficientNet
386
+ if m.out_features != nc:
387
+ setattr(model, name, nn.Linear(m.in_features, nc))
388
+ elif isinstance(m, nn.Sequential):
389
+ types = [type(x) for x in m]
390
+ if nn.Linear in types:
391
+ i = types.index(nn.Linear) # nn.Linear index
392
+ if m[i].out_features != nc:
393
+ m[i] = nn.Linear(m[i].in_features, nc)
394
+ elif nn.Conv2d in types:
395
+ i = types.index(nn.Conv2d) # nn.Conv2d index
396
+ if m[i].out_channels != nc:
397
+ m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
398
+
399
+ def init_criterion(self):
400
+ """Compute the classification loss between predictions and true labels."""
401
+ return v8ClassificationLoss()
402
+
403
+
404
+ class RTDETRDetectionModel(DetectionModel):
405
+
406
+ def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True):
407
+ super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
408
+
409
+ def init_criterion(self):
410
+ """Compute the classification loss between predictions and true labels."""
411
+ from ultralytics.vit.utils.loss import RTDETRDetectionLoss
412
+
413
+ return RTDETRDetectionLoss(num_classes=self.nc, use_vfl=True)
414
+
415
+ def loss(self, batch, preds=None):
416
+ if not hasattr(self, 'criterion'):
417
+ self.criterion = self.init_criterion()
418
+
419
+ img = batch['img']
420
+ # NOTE: preprocess gt_bbox and gt_labels to list.
421
+ bs = len(img)
422
+ batch_idx = batch['batch_idx']
423
+ gt_bbox, gt_class = [], []
424
+ for i in range(bs):
425
+ gt_bbox.append(batch['bboxes'][batch_idx == i].to(img.device))
426
+ gt_class.append(batch['cls'][batch_idx == i].to(device=img.device, dtype=torch.long))
427
+ targets = {'cls': gt_class, 'bboxes': gt_bbox}
428
+
429
+ preds = self.predict(img, batch=targets) if preds is None else preds
430
+ dec_out_bboxes, dec_out_logits, enc_topk_bboxes, enc_topk_logits, dn_meta = preds
431
+ # NOTE: `dn_meta` means it's eval mode, loss calculation for eval mode is not supported.
432
+ if dn_meta is None:
433
+ return 0, torch.zeros(3, device=dec_out_bboxes.device)
434
+ dn_out_bboxes, dec_out_bboxes = torch.split(dec_out_bboxes, dn_meta['dn_num_split'], dim=2)
435
+ dn_out_logits, dec_out_logits = torch.split(dec_out_logits, dn_meta['dn_num_split'], dim=2)
436
+
437
+ out_bboxes = torch.cat([enc_topk_bboxes.unsqueeze(0), dec_out_bboxes])
438
+ out_logits = torch.cat([enc_topk_logits.unsqueeze(0), dec_out_logits])
439
+
440
+ loss = self.criterion((out_bboxes, out_logits),
441
+ targets,
442
+ dn_out_bboxes=dn_out_bboxes,
443
+ dn_out_logits=dn_out_logits,
444
+ dn_meta=dn_meta)
445
+ return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']])
446
+
447
+ def predict(self, x, profile=False, visualize=False, batch=None):
448
+ """
449
+ Perform a forward pass through the network.
450
+
451
+ Args:
452
+ x (torch.Tensor): The input tensor to the model
453
+ profile (bool): Print the computation time of each layer if True, defaults to False.
454
+ visualize (bool): Save the feature maps of the model if True, defaults to False
455
+ batch (dict): A dict including gt boxes and labels from dataloader.
456
+
457
+ Returns:
458
+ (torch.Tensor): The last output of the model.
459
+ """
460
+ y, dt = [], [] # outputs
461
+ for m in self.model[:-1]: # except the head part
462
+ if m.f != -1: # if not from previous layer
463
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
464
+ if profile:
465
+ self._profile_one_layer(m, x, dt)
466
+ x = m(x) # run
467
+ y.append(x if m.i in self.save else None) # save output
468
+ if visualize:
469
+ feature_visualization(x, m.type, m.i, save_dir=visualize)
470
+ head = self.model[-1]
471
+ x = head([y[j] for j in head.f], batch) # head inference
472
+ return x
473
+
474
+
475
+ class Ensemble(nn.ModuleList):
476
+ """Ensemble of models."""
477
+
478
+ def __init__(self):
479
+ """Initialize an ensemble of models."""
480
+ super().__init__()
481
+
482
+ def forward(self, x, augment=False, profile=False, visualize=False):
483
+ """Function generates the YOLOv5 network's final layer."""
484
+ y = [module(x, augment, profile, visualize)[0] for module in self]
485
+ # y = torch.stack(y).max(0)[0] # max ensemble
486
+ # y = torch.stack(y).mean(0) # mean ensemble
487
+ y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C)
488
+ return y, None # inference, train output
489
+
490
+
491
+ # Functions ------------------------------------------------------------------------------------------------------------
492
+
493
+
494
+ def torch_safe_load(weight):
495
+ """
496
+ This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
497
+ it catches the error, logs a warning message, and attempts to install the missing module via the
498
+ check_requirements() function. After installation, the function again attempts to load the model using torch.load().
499
+
500
+ Args:
501
+ weight (str): The file path of the PyTorch model.
502
+
503
+ Returns:
504
+ (dict): The loaded PyTorch model.
505
+ """
506
+ from ultralytics.yolo.utils.downloads import attempt_download_asset
507
+
508
+ check_suffix(file=weight, suffix='.pt')
509
+ file = attempt_download_asset(weight) # search online if missing locally
510
+ try:
511
+ return torch.load(file, map_location='cpu'), file # load
512
+ except ModuleNotFoundError as e: # e.name is missing module name
513
+ if e.name == 'models':
514
+ raise TypeError(
515
+ emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained '
516
+ f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with '
517
+ f'YOLOv8 at https://github.com/ultralytics/ultralytics.'
518
+ f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
519
+ f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e
520
+ LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
521
+ f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
522
+ f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
523
+ f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")
524
+ check_requirements(e.name) # install missing module
525
+
526
+ return torch.load(file, map_location='cpu'), file # load
527
+
528
+
529
+ def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
530
+ """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""
531
+
532
+ ensemble = Ensemble()
533
+ for w in weights if isinstance(weights, list) else [weights]:
534
+ ckpt, w = torch_safe_load(w) # load ckpt
535
+ args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None # combined args
536
+ model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
537
+
538
+ # Model compatibility updates
539
+ model.args = args # attach args to model
540
+ model.pt_path = w # attach *.pt file path to model
541
+ model.task = guess_model_task(model)
542
+ if not hasattr(model, 'stride'):
543
+ model.stride = torch.tensor([32.])
544
+
545
+ # Append
546
+ ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode
547
+
548
+ # Module compatibility updates
549
+ for m in ensemble.modules():
550
+ t = type(m)
551
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
552
+ m.inplace = inplace # torch 1.7.0 compatibility
553
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
554
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
555
+
556
+ # Return model
557
+ if len(ensemble) == 1:
558
+ return ensemble[-1]
559
+
560
+ # Return ensemble
561
+ LOGGER.info(f'Ensemble created with {weights}\n')
562
+ for k in 'names', 'nc', 'yaml':
563
+ setattr(ensemble, k, getattr(ensemble[0], k))
564
+ ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
565
+ assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}'
566
+ return ensemble
567
+
568
+
569
+ def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
570
+ """Loads a single model weights."""
571
+ ckpt, weight = torch_safe_load(weight) # load ckpt
572
+ args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))} # combine model and default args, preferring model args
573
+ model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
574
+
575
+ # Model compatibility updates
576
+ model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model
577
+ model.pt_path = weight # attach *.pt file path to model
578
+ model.task = guess_model_task(model)
579
+ if not hasattr(model, 'stride'):
580
+ model.stride = torch.tensor([32.])
581
+
582
+ model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode
583
+
584
+ # Module compatibility updates
585
+ for m in model.modules():
586
+ t = type(m)
587
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
588
+ m.inplace = inplace # torch 1.7.0 compatibility
589
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
590
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
591
+
592
+ # Return model and ckpt
593
+ return model, ckpt
594
+
595
+
596
+ def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)
597
+ # Parse a YOLO model.yaml dictionary into a PyTorch model
598
+ import ast
599
+
600
+ # Args
601
+ max_channels = float('inf')
602
+ nc, act, scales = (d.get(x) for x in ('nc', 'act', 'scales'))
603
+ depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape'))
604
+ if scales:
605
+ scale = d.get('scale')
606
+ if not scale:
607
+ scale = tuple(scales.keys())[0]
608
+ LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
609
+ depth, width, max_channels = scales[scale]
610
+
611
+ if act:
612
+ Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
613
+ if verbose:
614
+ LOGGER.info(f"{colorstr('activation:')} {act}") # print
615
+
616
+ if verbose:
617
+ LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
618
+ ch = [ch]
619
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
620
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
621
+ m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module
622
+ for j, a in enumerate(args):
623
+ if isinstance(a, str):
624
+ with contextlib.suppress(ValueError):
625
+ args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
626
+
627
+ n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
628
+ if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
629
+ BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3):
630
+ c1, c2 = ch[f], args[0]
631
+ if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
632
+ c2 = make_divisible(min(c2, max_channels) * width, 8)
633
+
634
+ args = [c1, c2, *args[1:]]
635
+ if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
636
+ args.insert(2, n) # number of repeats
637
+ n = 1
638
+ elif m is AIFI:
639
+ args = [ch[f], *args]
640
+ elif m in (HGStem, HGBlock):
641
+ c1, cm, c2 = ch[f], args[0], args[1]
642
+ args = [c1, cm, c2, *args[2:]]
643
+ if m is HGBlock:
644
+ args.insert(4, n) # number of repeats
645
+ n = 1
646
+
647
+ elif m is nn.BatchNorm2d:
648
+ args = [ch[f]]
649
+ elif m is Concat:
650
+ c2 = sum(ch[x] for x in f)
651
+ elif m in (Detect, Segment, Pose, RTDETRDecoder):
652
+ args.append([ch[x] for x in f])
653
+ if m is Segment:
654
+ args[2] = make_divisible(min(args[2], max_channels) * width, 8)
655
+ else:
656
+ c2 = ch[f]
657
+
658
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
659
+ t = str(m)[8:-2].replace('__main__.', '') # module type
660
+ m.np = sum(x.numel() for x in m_.parameters()) # number params
661
+ m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
662
+ if verbose:
663
+ LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
664
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
665
+ layers.append(m_)
666
+ if i == 0:
667
+ ch = []
668
+ ch.append(c2)
669
+ return nn.Sequential(*layers), sorted(save)
670
+
671
+
672
+ def yaml_model_load(path):
673
+ """Load a YOLOv8 model from a YAML file."""
674
+ import re
675
+
676
+ path = Path(path)
677
+ if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)):
678
+ new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem)
679
+ LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.')
680
+ path = path.with_stem(new_stem)
681
+
682
+ unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path)) # i.e. yolov8x.yaml -> yolov8.yaml
683
+ yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
684
+ d = yaml_load(yaml_file) # model dict
685
+ d['scale'] = guess_model_scale(path)
686
+ d['yaml_file'] = str(path)
687
+ return d
688
+
689
+
690
+ def guess_model_scale(model_path):
691
+ """
692
+ Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale.
693
+ The function uses regular expression matching to find the pattern of the model scale in the YAML file name,
694
+ which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string.
695
+
696
+ Args:
697
+ model_path (str) or (Path): The path to the YOLO model's YAML file.
698
+
699
+ Returns:
700
+ (str): The size character of the model's scale, which can be n, s, m, l, or x.
701
+ """
702
+ with contextlib.suppress(AttributeError):
703
+ import re
704
+ return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1) # n, s, m, l, or x
705
+ return ''
706
+
707
+
708
+ def guess_model_task(model):
709
+ """
710
+ Guess the task of a PyTorch model from its architecture or configuration.
711
+
712
+ Args:
713
+ model (nn.Module) or (dict): PyTorch model or model configuration in YAML format.
714
+
715
+ Returns:
716
+ (str): Task of the model ('detect', 'segment', 'classify', 'pose').
717
+
718
+ Raises:
719
+ SyntaxError: If the task of the model could not be determined.
720
+ """
721
+
722
+ def cfg2task(cfg):
723
+ """Guess from YAML dictionary."""
724
+ m = cfg['head'][-1][-2].lower() # output module name
725
+ if m in ('classify', 'classifier', 'cls', 'fc'):
726
+ return 'classify'
727
+ if m == 'detect':
728
+ return 'detect'
729
+ if m == 'segment':
730
+ return 'segment'
731
+ if m == 'pose':
732
+ return 'pose'
733
+
734
+ # Guess from model cfg
735
+ if isinstance(model, dict):
736
+ with contextlib.suppress(Exception):
737
+ return cfg2task(model)
738
+
739
+ # Guess from PyTorch model
740
+ if isinstance(model, nn.Module): # PyTorch model
741
+ for x in 'model.args', 'model.model.args', 'model.model.model.args':
742
+ with contextlib.suppress(Exception):
743
+ return eval(x)['task']
744
+ for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
745
+ with contextlib.suppress(Exception):
746
+ return cfg2task(eval(x))
747
+
748
+ for m in model.modules():
749
+ if isinstance(m, Detect):
750
+ return 'detect'
751
+ elif isinstance(m, Segment):
752
+ return 'segment'
753
+ elif isinstance(m, Classify):
754
+ return 'classify'
755
+ elif isinstance(m, Pose):
756
+ return 'pose'
757
+
758
+ # Guess from model filename
759
+ if isinstance(model, (str, Path)):
760
+ model = Path(model)
761
+ if '-seg' in model.stem or 'segment' in model.parts:
762
+ return 'segment'
763
+ elif '-cls' in model.stem or 'classify' in model.parts:
764
+ return 'classify'
765
+ elif '-pose' in model.stem or 'pose' in model.parts:
766
+ return 'pose'
767
+ elif 'detect' in model.parts:
768
+ return 'detect'
769
+
770
+ # Unable to determine task from model
771
+ LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
772
+ "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.")
773
+ return 'detect' # assume detect
ultralytics/tracker/README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Tracker
2
+
3
+ ## Supported Trackers
4
+
5
+ - [x] ByteTracker
6
+ - [x] BoT-SORT
7
+
8
+ ## Usage
9
+
10
+ ### python interface:
11
+
12
+ You can use the Python interface to track objects using the YOLO model.
13
+
14
+ ```python
15
+ from ultralytics import YOLO
16
+
17
+ model = YOLO("yolov8n.pt") # or a segmentation model .i.e yolov8n-seg.pt
18
+ model.track(
19
+ source="video/streams",
20
+ stream=True,
21
+ tracker="botsort.yaml", # or 'bytetrack.yaml'
22
+ show=True,
23
+ )
24
+ ```
25
+
26
+ You can get the IDs of the tracked objects using the following code:
27
+
28
+ ```python
29
+ from ultralytics import YOLO
30
+
31
+ model = YOLO("yolov8n.pt")
32
+
33
+ for result in model.track(source="video.mp4"):
34
+ print(
35
+ result.boxes.id.cpu().numpy().astype(int)
36
+ ) # this will print the IDs of the tracked objects in the frame
37
+ ```
38
+
39
+ If you want to use the tracker with a folder of images or when you loop on the video frames, you should use the `persist` parameter to tell the model that these frames are related to each other so the IDs will be fixed for the same objects. Otherwise, the IDs will be different in each frame because in each loop, the model creates a new object for tracking, but the `persist` parameter makes it use the same object for tracking.
40
+
41
+ ```python
42
+ import cv2
43
+ from ultralytics import YOLO
44
+
45
+ cap = cv2.VideoCapture("video.mp4")
46
+ model = YOLO("yolov8n.pt")
47
+ while True:
48
+ ret, frame = cap.read()
49
+ if not ret:
50
+ break
51
+ results = model.track(frame, persist=True)
52
+ boxes = results[0].boxes.xyxy.cpu().numpy().astype(int)
53
+ ids = results[0].boxes.id.cpu().numpy().astype(int)
54
+ for box, id in zip(boxes, ids):
55
+ cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
56
+ cv2.putText(
57
+ frame,
58
+ f"Id {id}",
59
+ (box[0], box[1]),
60
+ cv2.FONT_HERSHEY_SIMPLEX,
61
+ 1,
62
+ (0, 0, 255),
63
+ 2,
64
+ )
65
+ cv2.imshow("frame", frame)
66
+ if cv2.waitKey(1) & 0xFF == ord("q"):
67
+ break
68
+ ```
69
+
70
+ ## Change tracker parameters
71
+
72
+ You can change the tracker parameters by eding the `tracker.yaml` file which is located in the ultralytics/tracker/cfg folder.
73
+
74
+ ## Command Line Interface (CLI)
75
+
76
+ You can also use the command line interface to track objects using the YOLO model.
77
+
78
+ ```bash
79
+ yolo detect track source=... tracker=...
80
+ yolo segment track source=... tracker=...
81
+ yolo pose track source=... tracker=...
82
+ ```
83
+
84
+ By default, trackers will use the configuration in `ultralytics/tracker/cfg`.
85
+ We also support using a modified tracker config file. Please refer to the tracker config files
86
+ in `ultralytics/tracker/cfg`.<br>
ultralytics/tracker/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ from .track import register_tracker
4
+ from .trackers import BOTSORT, BYTETracker
5
+
6
+ __all__ = 'register_tracker', 'BOTSORT', 'BYTETracker' # allow simpler import