Spaces:
Sleeping
Sleeping
Commit
·
9aaee22
1
Parent(s):
79883fe
Upload 2 files
Browse files- main.py +88 -0
- requirements.txt +6 -0
main.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Author: hibana2077 hibana2077@gmail.com
|
3 |
+
Date: 2024-01-02 21:43:38
|
4 |
+
LastEditors: hibana2077 hibana2077@gmail.com
|
5 |
+
LastEditTime: 2024-01-03 18:23:40
|
6 |
+
FilePath: \hayabusa\src\main.py
|
7 |
+
Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
|
8 |
+
'''
|
9 |
+
from operator import index
|
10 |
+
import streamlit as st
|
11 |
+
import plotly.express as px
|
12 |
+
from ydata_profiling import ProfileReport
|
13 |
+
import pandas as pd
|
14 |
+
import pickle
|
15 |
+
import time
|
16 |
+
import ydata_profiling
|
17 |
+
from streamlit_pandas_profiling import st_profile_report
|
18 |
+
import os
|
19 |
+
|
20 |
+
if os.path.exists('./dataset/') == False:
|
21 |
+
os.mkdir('./dataset/')
|
22 |
+
if os.path.exists('./model/') == False:
|
23 |
+
os.mkdir('./model/')
|
24 |
+
if os.path.exists('./pipeline/') == False:
|
25 |
+
os.mkdir('./pipeline/')
|
26 |
+
|
27 |
+
with st.sidebar:
|
28 |
+
st.title("AutoML")
|
29 |
+
choice = st.radio("Navigation", ["Upload","Profiling","Modelling", "Download"])
|
30 |
+
st.info("This project application helps you build and explore your data.")
|
31 |
+
|
32 |
+
if choice == "Upload":
|
33 |
+
st.title("Upload Your Dataset")
|
34 |
+
file = st.file_uploader("Upload Your Dataset")
|
35 |
+
if file:
|
36 |
+
df = pd.read_csv(file, index_col=None)
|
37 |
+
df.drop("Unnamed: 0", axis=1, inplace=True)
|
38 |
+
df.to_csv('dataset.csv', index=None)
|
39 |
+
st.dataframe(df)
|
40 |
+
st.session_state['df'] = df
|
41 |
+
|
42 |
+
if choice == "Profiling":
|
43 |
+
st.title("Exploratory Data Analysis")
|
44 |
+
df:pd.DataFrame = st.session_state['df']
|
45 |
+
pr = ProfileReport(df, title="Profiling Report")
|
46 |
+
st_profile_report(pr)
|
47 |
+
|
48 |
+
if choice == "Modelling":
|
49 |
+
df:pd.DataFrame = st.session_state['df']
|
50 |
+
chosen_target = st.selectbox('Choose the Target Column', df.columns)
|
51 |
+
ml_task = st.selectbox('Choose the ML Task', ['Classification', 'Regression'])
|
52 |
+
if st.button('Run Modelling'):
|
53 |
+
if ml_task == 'Classification':
|
54 |
+
from pycaret.classification import setup, compare_models, pull, save_model, get_config
|
55 |
+
setup(df, target=chosen_target)
|
56 |
+
setup_df = pull()
|
57 |
+
st.dataframe(setup_df)
|
58 |
+
best_model = compare_models(exclude=['lightgbm'])
|
59 |
+
compare_df = pull()
|
60 |
+
st.dataframe(compare_df)
|
61 |
+
save_model(best_model, 'best_model')
|
62 |
+
save_model(best_model, f"./model/{chosen_target}_{time.time()}")
|
63 |
+
pipeline = get_config('pipeline')
|
64 |
+
st.write(pipeline)
|
65 |
+
# save the pipeline
|
66 |
+
with open('pipeline.pkl', 'wb') as f:
|
67 |
+
pickle.dump(pipeline, f)
|
68 |
+
else:
|
69 |
+
from pycaret.regression import setup, compare_models, pull, save_model
|
70 |
+
setup(df, target=chosen_target)
|
71 |
+
setup_df = pull()
|
72 |
+
st.dataframe(setup_df)
|
73 |
+
best_model = compare_models(exclude=['lightgbm'])
|
74 |
+
compare_df = pull()
|
75 |
+
st.dataframe(compare_df)
|
76 |
+
save_model(best_model, 'best_model')
|
77 |
+
save_model(best_model, f"./model/{chosen_target}_{time.time()}")
|
78 |
+
pipeline = get_config('pipeline')
|
79 |
+
st.write(pipeline)
|
80 |
+
# save the pipeline
|
81 |
+
with open('pipeline.pkl', 'wb') as f:
|
82 |
+
pickle.dump(pipeline, f)
|
83 |
+
|
84 |
+
if choice == "Download":
|
85 |
+
with open('best_model.pkl', 'rb') as f:
|
86 |
+
st.download_button('Download Model', f, file_name="best_model.pkl")
|
87 |
+
with open('pipeline.pkl', 'rb') as f:
|
88 |
+
st.download_button('Download Pipeline', f, file_name="pipeline.pkl")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ydata-profiling
|
2 |
+
pandas
|
3 |
+
pycaret[models]
|
4 |
+
streamlit
|
5 |
+
numpy
|
6 |
+
streamlit-pandas-profiling
|