#!/usr/bin/env python from transformers import AutoModel, AutoTokenizer import torch import argparse import os def export_model(model_id, output_dir): if not os.path.exists(output_dir): print(f"Output directory '{output_dir}' does not exist") return embedder = AutoModel.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) input_names = ["input_ids", "attention_mask", "token_type_ids"] output_names = ["last_hidden_state"] input_ids = torch.ones(1, 32, dtype=torch.int64) attention_mask = torch.ones(1, 32, dtype=torch.int64) token_type_ids = torch.zeros(1, 32, dtype=torch.int64) args = (input_ids, attention_mask, token_type_ids) f = os.path.join(output_dir, "model.onnx") print(f"Exporting onnx model to {f}") torch.onnx.export( embedder, args=args, f=f, do_constant_folding=True, input_names=input_names, output_names=output_names, dynamic_axes={ "input_ids": {0: "batch_size", 1: "dyn"}, "attention_mask": {0: "batch_size", 1: "dyn"}, "token_type_ids": {0: "batch_size", 1: "dyn"}, "last_hidden_state": {0: "batch_size", 1: "dyn"}, }, opset_version=14, ) tokenizer.save_pretrained(output_dir) def main(): parser = argparse.ArgumentParser() parser.add_argument("--hf_model", type=str, required=True) parser.add_argument("--output_dir", type=str, required=True) args = parser.parse_args() export_model(args.hf_model, args.output_dir) if __name__ == "__main__": main()