File size: 11,653 Bytes
2091d9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import cv2
import torch
import random
import tempfile
import numpy as np
from pathlib import Path
from diffusers import (
    ControlNetModel,
    StableDiffusionXLControlNetPipeline,
    UNet2DConditionModel,
    EulerDiscreteScheduler,
)
import spaces
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from ip_adapter import IPAdapterXL
from safetensors.torch import load_file

snapshot_download(
    repo_id="h94/IP-Adapter", allow_patterns="sdxl_models/*", local_dir="."
)

# CPU fallback & pipeline-definition
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32

# load models & scheduler (==>EULER) & CN (==>canny > test what's better!!!)
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"

controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
controlnet = ControlNEtModel.from_pretrained(
    controlnet_path, use_safetensors=False, torch_dtype=torch.float16
).to(device)

# load SDXL lightning >> put Turbo here if fallback to Comfy @Litto

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    base_model_path,
    controlnet = controlnet,
    torch_dtype=torch.float16,
    variant="fp16",
    add_watermark=False,
)to(device)
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = EulerDiscreteScheduler.from_config(
    pipe.scheduler.config, timestep_spacing="trailing", prediction_type="epsilon"
)
pipe.unet.load_state_dict(
    load_file(
    hf_hub_download(
        "ByteDance/SDXL-Lightning", "sdxl_lightning_2step_unet.safetensors"
    ),
    device="cuda",
  )
)

# load ip-adapter with specific target blocks for style transfer and layout preservation. Should be better than Comfy! Test this!
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
    pipe,
    image_encoder_path,
    ip_ckpt,
    device,
    target_blocks=["up_blocks.0.attentions.1"]
)

# Resizing the input image
# OpenCV goes here!!!
# Test this with smaller side-no for faster infr

def resize_img(
    input_image,
    max_side=1280,
    min_side=1024,
    size=None,
    pad_to_max_side=False,
    mode=Image.BILINEAR,
    base_pixel_number=64,
):
    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        ratio = min_side / min(h, w)
        w, h = round(ratio * w), round(ratio * h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
        w = (round(ratio * w) // base_pixel_number) * base_pixel_number
        w = (round(ratio * h) // base_pixel_number) * base_pixel_number
        nput_image.resize([w_resize_new, h_resize_new], mode)
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
            np.array(input_image)
        )
        input_image = Image.fromarray(res)
    return input_image

# expand example images for endpoints --> info an Johannes/Jascha what to expect

examples = [
    [
        "./assets/zeichnung1.jpg",
        None,
        "3D model, cute monster, test prompt",
        1.0,
        0.0,
    ],
    [
        "./assets/zeichnung2.jpg",
        "./assets/guidance-target.jpg",
        "3D model, cute, kawai, monster, another test prompt",
        1.0,
        0.6,
    ],
]

def run_for_examples(style_image, source_image, prompt, scale, control_scale):
    return create_image(
        image_pil=style_image,
        input_image=source_image,
        prompt=prompt,
        n_prompt="text, watermark, low res, low quality, worst quality, deformed, blurry",
        scale=scale,
        control_scale=control_scale,
        guidance_scale=0.0,
        num_inference_steps=2,
        seed=42,
        target="Load only style blocks",
        neg_content_prompt="",
        neg_content_scale=0,
    )

# Main function for image synthesis (input -> run_for_examples)

@spaces.GPU(enable_queue=True)
def create_image(
    image_pil,
    input_image,
    prompt,
    n_prompt,
    scale,
    control_scale,
    guidance_scale,
    num_inference_steps,
    target="Load only style blocks",
    neg_content_prompt=None,
    neg_content_scale=0,
):
    seed = random.randint(0, MAX_SEED) if seed == -1 else seed
    if target == "Load original IP-Adapter":
        # target_blocks=["blocks"] for original IP-Adapter
        ip_model = IPAdapterXL(
            pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]
        )
    elif target == "Load only style blocks":
        # target_blocks=["up_blocks.0.attentions.1"] for style blocks only
        ip_model = IPAdapterXL(
            pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"],
        )
    elif target == "Load style+layout block":
        # target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
        ip_model = IPAdapterXL(
            pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"],
        )

    if input_image is not None:
        input_image = resize_img(input_image, max_side=1024)
        cv_input_image = pil_to_cv2(input_image)
        detected_map = cv2.Canny(cv_input_image, 50, 200)
        canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
    else:
        canny_map = Image.new("RGB", (1024, 1024), color=(255,255,255))
        control_scale = 0

    if float(control_scale) == 0:
        canny_map = canny_map.resize((1024, 1024))

    if len(neg_content_prompt) > 0 and neg_content_scale != 0:
        images = ip_model.generate(
            pil_image_image_pil,
            prompt=prompt,
            negative_prompt=n_prompt,
            scale=scale,
            guidance_scale=guidance_scale,
            num_samples=1,
            num_inference_steps=num_inference_steps,
            seed=seed,
            image=canny_map,
            controlnet_conditioning_scale=float(control_scale),
        )
    image = images[0]
    with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
        image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True) # check what happens to imgs when this changes!!!
        return Path(tmpfile.name)
    
def pil_to_cv2(image_pil):
    image_np = np.array(image_pil)
    image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
    return image_cv2

# Gradio Description & Frontend Stuff for Space (remove this for Endpoint)
title = r"""
<h1 align="center">MewMewMew: Simsalabim!</h1>
"""

description = r"""
<b>Let's test this! ARM <3 GoldExtra</b><br>
<b>SDXL-Lightning && IP-Adapter</b>
"""

article = r"""
Ask Hidéo if something breaks: <a href="mailto:hideo@artificialmuseum.com">Hidéo's Mail</a>
"""

block = gr.Blocks()
with block:
    #description
    gr.Markdown(title)
    gr.MArkdown(description)

    with gr.Tabs():
        with gr.Row():
            with gr.Column():
                with gr.Row()
                with gr.Column():
                    image_pil = gr.Image(label="Style Image", type="pil")
                with gr.Column():
                    prompt = gr.Textbox(
                        label="Prompt",
                        value="mewmewmew, kitty cats, unicorns, uWu",
                    )

                    scale = gr.Slider(
                        minimum=0, maximum=2.0, step=0.01, value=1.0, label="Maßstab // scale"
                    )
                with gr.Accordion(open=False, label="Für Details erweitern!"):
                    target = gr.Radio(
                        [
                            "Load only style blocks",
                            "Load style+layout block",
                            "Load original IP-Adapter",
                        ],
                        value="Load only style blocks",
                        label="Modus für IP-Adapter auswählen"
                    )
                    
                    with gr.Column():
                        src_image_pil = gr.Image(
                            label="Guidance Image (optional)", type="pil"
                        )
                    control_scale = gr.Slider(
                        minimum=0, maximum=1.0, step=0.1, value=0.5,
                        label="ControlNet-Stärke // control_scale",
                    )
                    n_prompt = gr.Textbox(
                        label="Negative Prompts",
                        value=""text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
                    )
                    neg_content_prompt = gr.Textbox(
                        label="Negative Content Prompt (optional)", value=""
                    )
                    neg_content_scale = gr.Slider(
                        minimum=0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                        label="Negative Content Stärke // neg_content_scale"
                    )
                    guidance_scale = gr.Slider(
                        minimum=0,
                        maximum=10.0,
                        step=0.01,
                        value=0.0,
                        label="guidance-scale"
                    )
                    num_inference_steps = gr.Slider(
                        minimum=2,
                        maximum=50.0,
                        step=1.0,
                        value=2,
                        label="Anzahl der Inference Steps (optional) // num_inference_steps"
                    )
                    seed = gr.Slider(
                        minimum=-1,
                        maximum=MAX_SEED,
                        value=-1,
                        step=1,
                        label="Seed Value // -1 = random // Seed-Proof=True"
                    )

                generate_button = gr.Button("Simsalabim")

            with gr.Column():
                generated_image = gr.Image(label="MewMewMagix uWu")

    inputs = [
        image_pil,
        src_image_pil,
        prompt,
        n_prompt,
        scale,
        control_scale,
        guidance_scale,
        num_inference_steps,
        seed,
        target,
        neg_content_prompt,
        neg_content_scale,
    ]
    outputs = [generated_image]

    gr.on(
        triggers=[
            prompt.input,
            generate_button.click,
            guidance_scale.input,
            scale.input,
            control_scale.input,
            seed.input,
        ],
        fn=create_image,
        inputs=inputs,
        outputs=outputs,
        show_progress="minimal",
        show_api=False,
        trigger_mode="always_last",
    )

    gr.Examples(
        examples=examples,
        inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
        fn=run_for_examples,
        outputs=[generated_image],
        cache_examples=True,
    )

    gr.Markdown(article)

    block.queue(api_open=False)
    block.launch(show_api=False)