Spaces:
Paused
Paused
File size: 11,653 Bytes
2091d9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import cv2
import torch
import random
import tempfile
import numpy as np
from pathlib import Path
from diffusers import (
ControlNetModel,
StableDiffusionXLControlNetPipeline,
UNet2DConditionModel,
EulerDiscreteScheduler,
)
import spaces
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from ip_adapter import IPAdapterXL
from safetensors.torch import load_file
snapshot_download(
repo_id="h94/IP-Adapter", allow_patterns="sdxl_models/*", local_dir="."
)
# CPU fallback & pipeline-definition
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# load models & scheduler (==>EULER) & CN (==>canny > test what's better!!!)
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
controlnet_path = "diffusers/controlnet-canny-sdxl-1.0"
controlnet = ControlNEtModel.from_pretrained(
controlnet_path, use_safetensors=False, torch_dtype=torch.float16
).to(device)
# load SDXL lightning >> put Turbo here if fallback to Comfy @Litto
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet = controlnet,
torch_dtype=torch.float16,
variant="fp16",
add_watermark=False,
)to(device)
pipe.set_progress_bar_config(disable=True)
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config, timestep_spacing="trailing", prediction_type="epsilon"
)
pipe.unet.load_state_dict(
load_file(
hf_hub_download(
"ByteDance/SDXL-Lightning", "sdxl_lightning_2step_unet.safetensors"
),
device="cuda",
)
)
# load ip-adapter with specific target blocks for style transfer and layout preservation. Should be better than Comfy! Test this!
# target_blocks=["block"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
pipe,
image_encoder_path,
ip_ckpt,
device,
target_blocks=["up_blocks.0.attentions.1"]
)
# Resizing the input image
# OpenCV goes here!!!
# Test this with smaller side-no for faster infr
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w = (round(ratio * w) // base_pixel_number) * base_pixel_number
w = (round(ratio * h) // base_pixel_number) * base_pixel_number
nput_image.resize([w_resize_new, h_resize_new], mode)
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = (
np.array(input_image)
)
input_image = Image.fromarray(res)
return input_image
# expand example images for endpoints --> info an Johannes/Jascha what to expect
examples = [
[
"./assets/zeichnung1.jpg",
None,
"3D model, cute monster, test prompt",
1.0,
0.0,
],
[
"./assets/zeichnung2.jpg",
"./assets/guidance-target.jpg",
"3D model, cute, kawai, monster, another test prompt",
1.0,
0.6,
],
]
def run_for_examples(style_image, source_image, prompt, scale, control_scale):
return create_image(
image_pil=style_image,
input_image=source_image,
prompt=prompt,
n_prompt="text, watermark, low res, low quality, worst quality, deformed, blurry",
scale=scale,
control_scale=control_scale,
guidance_scale=0.0,
num_inference_steps=2,
seed=42,
target="Load only style blocks",
neg_content_prompt="",
neg_content_scale=0,
)
# Main function for image synthesis (input -> run_for_examples)
@spaces.GPU(enable_queue=True)
def create_image(
image_pil,
input_image,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
target="Load only style blocks",
neg_content_prompt=None,
neg_content_scale=0,
):
seed = random.randint(0, MAX_SEED) if seed == -1 else seed
if target == "Load original IP-Adapter":
# target_blocks=["blocks"] for original IP-Adapter
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["blocks"]
)
elif target == "Load only style blocks":
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"],
)
elif target == "Load style+layout block":
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(
pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"],
)
if input_image is not None:
input_image = resize_img(input_image, max_side=1024)
cv_input_image = pil_to_cv2(input_image)
detected_map = cv2.Canny(cv_input_image, 50, 200)
canny_map = Image.fromarray(cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB))
else:
canny_map = Image.new("RGB", (1024, 1024), color=(255,255,255))
control_scale = 0
if float(control_scale) == 0:
canny_map = canny_map.resize((1024, 1024))
if len(neg_content_prompt) > 0 and neg_content_scale != 0:
images = ip_model.generate(
pil_image_image_pil,
prompt=prompt,
negative_prompt=n_prompt,
scale=scale,
guidance_scale=guidance_scale,
num_samples=1,
num_inference_steps=num_inference_steps,
seed=seed,
image=canny_map,
controlnet_conditioning_scale=float(control_scale),
)
image = images[0]
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True) # check what happens to imgs when this changes!!!
return Path(tmpfile.name)
def pil_to_cv2(image_pil):
image_np = np.array(image_pil)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
return image_cv2
# Gradio Description & Frontend Stuff for Space (remove this for Endpoint)
title = r"""
<h1 align="center">MewMewMew: Simsalabim!</h1>
"""
description = r"""
<b>Let's test this! ARM <3 GoldExtra</b><br>
<b>SDXL-Lightning && IP-Adapter</b>
"""
article = r"""
Ask Hidéo if something breaks: <a href="mailto:hideo@artificialmuseum.com">Hidéo's Mail</a>
"""
block = gr.Blocks()
with block:
#description
gr.Markdown(title)
gr.MArkdown(description)
with gr.Tabs():
with gr.Row():
with gr.Column():
with gr.Row()
with gr.Column():
image_pil = gr.Image(label="Style Image", type="pil")
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
value="mewmewmew, kitty cats, unicorns, uWu",
)
scale = gr.Slider(
minimum=0, maximum=2.0, step=0.01, value=1.0, label="Maßstab // scale"
)
with gr.Accordion(open=False, label="Für Details erweitern!"):
target = gr.Radio(
[
"Load only style blocks",
"Load style+layout block",
"Load original IP-Adapter",
],
value="Load only style blocks",
label="Modus für IP-Adapter auswählen"
)
with gr.Column():
src_image_pil = gr.Image(
label="Guidance Image (optional)", type="pil"
)
control_scale = gr.Slider(
minimum=0, maximum=1.0, step=0.1, value=0.5,
label="ControlNet-Stärke // control_scale",
)
n_prompt = gr.Textbox(
label="Negative Prompts",
value=""text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
)
neg_content_prompt = gr.Textbox(
label="Negative Content Prompt (optional)", value=""
)
neg_content_scale = gr.Slider(
minimum=0,
maximum=1.0,
step=0.1,
value=0.5,
label="Negative Content Stärke // neg_content_scale"
)
guidance_scale = gr.Slider(
minimum=0,
maximum=10.0,
step=0.01,
value=0.0,
label="guidance-scale"
)
num_inference_steps = gr.Slider(
minimum=2,
maximum=50.0,
step=1.0,
value=2,
label="Anzahl der Inference Steps (optional) // num_inference_steps"
)
seed = gr.Slider(
minimum=-1,
maximum=MAX_SEED,
value=-1,
step=1,
label="Seed Value // -1 = random // Seed-Proof=True"
)
generate_button = gr.Button("Simsalabim")
with gr.Column():
generated_image = gr.Image(label="MewMewMagix uWu")
inputs = [
image_pil,
src_image_pil,
prompt,
n_prompt,
scale,
control_scale,
guidance_scale,
num_inference_steps,
seed,
target,
neg_content_prompt,
neg_content_scale,
]
outputs = [generated_image]
gr.on(
triggers=[
prompt.input,
generate_button.click,
guidance_scale.input,
scale.input,
control_scale.input,
seed.input,
],
fn=create_image,
inputs=inputs,
outputs=outputs,
show_progress="minimal",
show_api=False,
trigger_mode="always_last",
)
gr.Examples(
examples=examples,
inputs=[image_pil, src_image_pil, prompt, scale, control_scale],
fn=run_for_examples,
outputs=[generated_image],
cache_examples=True,
)
gr.Markdown(article)
block.queue(api_open=False)
block.launch(show_api=False) |