File size: 4,538 Bytes
a9289c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""Compute segmentation maps for images in the input folder.
"""
import os
import glob
import cv2
import argparse

import torch
import torch.nn.functional as F

import util.io

from torchvision.transforms import Compose
from dpt.models import DPTSegmentationModel
from dpt.transforms import Resize, NormalizeImage, PrepareForNet


def run(input_path, output_path, model_path, model_type="dpt_hybrid", optimize=True):
    """Run segmentation network

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    net_w = net_h = 480

    # load network
    if model_type == "dpt_large":
        model = DPTSegmentationModel(
            150,
            path=model_path,
            backbone="vitl16_384",
        )
    elif model_type == "dpt_hybrid":
        model = DPTSegmentationModel(
            150,
            path=model_path,
            backbone="vitb_rn50_384",
        )
    else:
        assert (
            False
        ), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid]"

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            PrepareForNet(),
        ]
    )

    model.eval()

    if optimize == True and device == torch.device("cuda"):
        model = model.to(memory_format=torch.channels_last)
        model = model.half()

    model.to(device)

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")

    for ind, img_name in enumerate(img_names):

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))

        # input
        img = util.io.read_image(img_name)
        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
            if optimize == True and device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()

            out = model.forward(sample)

            prediction = torch.nn.functional.interpolate(
                out, size=img.shape[:2], mode="bicubic", align_corners=False
            )
            prediction = torch.argmax(prediction, dim=1) + 1
            prediction = prediction.squeeze().cpu().numpy()

        # output
        filename = os.path.join(
            output_path, os.path.splitext(os.path.basename(img_name))[0]
        )
        util.io.write_segm_img(filename, img, prediction, alpha=0.5)

    print("finished")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-i", "--input_path", default="input", help="folder with input images"
    )

    parser.add_argument(
        "-o", "--output_path", default="output_semseg", help="folder for output images"
    )

    parser.add_argument(
        "-m",
        "--model_weights",
        default=None,
        help="path to the trained weights of model",
    )

    # 'vit_large', 'vit_hybrid'
    parser.add_argument("-t", "--model_type", default="dpt_hybrid", help="model type")

    parser.add_argument("--optimize", dest="optimize", action="store_true")
    parser.add_argument("--no-optimize", dest="optimize", action="store_false")
    parser.set_defaults(optimize=True)

    args = parser.parse_args()

    default_models = {
        "dpt_large": "weights/dpt_large-ade20k-b12dca68.pt",
        "dpt_hybrid": "weights/dpt_hybrid-ade20k-53898607.pt",
    }

    if args.model_weights is None:
        args.model_weights = default_models[args.model_type]

    # set torch options
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    # compute segmentation maps
    run(
        args.input_path,
        args.output_path,
        args.model_weights,
        args.model_type,
        args.optimize,
    )