File size: 9,509 Bytes
f81fd9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目

"""
    该文件中主要包含2个函数

    不具备多线程能力的函数:
    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程

    具备多线程调用能力的函数
    2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
"""

import os
import json
import time
import gradio as gr
import logging
import traceback
import requests
import importlib

# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
    get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')

timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'

def get_full_error(chunk, stream_response):
    """
        获取完整的从Openai返回的报错
    """
    while True:
        try:
            chunk += next(stream_response)
        except:
            break
    return chunk


def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
    """
    发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
    inputs:
        是本次问询的输入
    sys_prompt:
        系统静默prompt
    llm_kwargs:
        chatGPT的内部调优参数
    history:
        是之前的对话列表
    observe_window = None:
        用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
    """
    from anthropic import Anthropic
    watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
    prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
    retry = 0
    if len(ANTHROPIC_API_KEY) == 0:
        raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")

    while True:
        try:
            # make a POST request to the API endpoint, stream=False
            from .bridge_all import model_info
            anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
            # endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
            # with ProxyNetworkActivate()
            stream = anthropic.completions.create(
                prompt=prompt,
                max_tokens_to_sample=4096,       # The maximum number of tokens to generate before stopping.
                model=llm_kwargs['llm_model'],
                stream=True,
                temperature = llm_kwargs['temperature']
            )
            break
        except Exception as e:
            retry += 1
            traceback.print_exc()
            if retry > MAX_RETRY: raise TimeoutError
            if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
    result = ''
    try: 
        for completion in stream:
            result += completion.completion
            if not console_slience: print(completion.completion, end='')
            if observe_window is not None: 
                # 观测窗,把已经获取的数据显示出去
                if len(observe_window) >= 1: observe_window[0] += completion.completion
                # 看门狗,如果超过期限没有喂狗,则终止
                if len(observe_window) >= 2:  
                    if (time.time()-observe_window[1]) > watch_dog_patience:
                        raise RuntimeError("用户取消了程序。")
    except Exception as e:
        traceback.print_exc()

    return result


def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
    """
    发送至chatGPT,流式获取输出。
    用于基础的对话功能。
    inputs 是本次问询的输入
    top_p, temperature是chatGPT的内部调优参数
    history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
    chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
    additional_fn代表点击的哪个按钮,按钮见functional.py
    """
    from anthropic import Anthropic
    if len(ANTHROPIC_API_KEY) == 0:
        chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
        return
    
    if additional_fn is not None:
        from core_functional import handle_core_functionality
        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)

    raw_input = inputs
    logging.info(f'[raw_input] {raw_input}')
    chatbot.append((inputs, ""))
    yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面

    try:
        prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
    except RuntimeError as e:
        chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
        yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
        return

    history.append(inputs); history.append("")

    retry = 0
    while True:
        try:
            # make a POST request to the API endpoint, stream=True
            from .bridge_all import model_info
            anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
            # endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
            # with ProxyNetworkActivate()
            stream = anthropic.completions.create(
                prompt=prompt,
                max_tokens_to_sample=4096,       # The maximum number of tokens to generate before stopping.
                model=llm_kwargs['llm_model'],
                stream=True,
                temperature = llm_kwargs['temperature']
            )
            
            break
        except:
            retry += 1
            chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
            retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
            yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
            if retry > MAX_RETRY: raise TimeoutError

    gpt_replying_buffer = ""
    
    for completion in stream:
        try:
            gpt_replying_buffer = gpt_replying_buffer + completion.completion
            history[-1] = gpt_replying_buffer
            chatbot[-1] = (history[-2], history[-1])
            yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面

        except Exception as e:
            from toolbox import regular_txt_to_markdown
            tb_str = '```\n' + trimmed_format_exc() + '```'
            chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
            yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
            return
        



# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
def convert_messages_to_prompt(messages):
    prompt = ""
    role_map = {
        "system": "Human",
        "user": "Human",
        "assistant": "Assistant",
    }
    for message in messages:
        role = message["role"]
        content = message["content"]
        transformed_role = role_map[role]
        prompt += f"\n\n{transformed_role.capitalize()}: {content}"
    prompt += "\n\nAssistant: "
    return prompt

def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
    """
    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
    """
    from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT

    conversation_cnt = len(history) // 2

    messages = [{"role": "system", "content": system_prompt}]
    if conversation_cnt:
        for index in range(0, 2*conversation_cnt, 2):
            what_i_have_asked = {}
            what_i_have_asked["role"] = "user"
            what_i_have_asked["content"] = history[index]
            what_gpt_answer = {}
            what_gpt_answer["role"] = "assistant"
            what_gpt_answer["content"] = history[index+1]
            if what_i_have_asked["content"] != "":
                if what_gpt_answer["content"] == "": continue
                if what_gpt_answer["content"] == timeout_bot_msg: continue
                messages.append(what_i_have_asked)
                messages.append(what_gpt_answer)
            else:
                messages[-1]['content'] = what_gpt_answer['content']

    what_i_ask_now = {}
    what_i_ask_now["role"] = "user"
    what_i_ask_now["content"] = inputs
    messages.append(what_i_ask_now)
    prompt = convert_messages_to_prompt(messages)

    return prompt