# %% #/default_exp app # %% #/export from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% #/export learn = load_learner('model.pkl') # %% #/export categories = ('Dog','Cat') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories,map(float,probs))) # %% #/export image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace spaces." examples = ['dog.jpeg','cat.jpeg','dunno.jpeg'] iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, title = 'Pet Breed Classifier', description = "A cat vs. dog classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace spaces.") iface.launch(inline=False)