Spaces:
Runtime error
Runtime error
Delete preprocess
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- preprocess/README.txt +0 -1
- preprocess/humanparsing/datasets/__init__.py +0 -0
- preprocess/humanparsing/datasets/__pycache__/__init__.cpython-38.pyc +0 -0
- preprocess/humanparsing/datasets/__pycache__/simple_extractor_dataset.cpython-38.pyc +0 -0
- preprocess/humanparsing/datasets/datasets.py +0 -201
- preprocess/humanparsing/datasets/simple_extractor_dataset.py +0 -89
- preprocess/humanparsing/datasets/target_generation.py +0 -40
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc +0 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py +0 -166
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py +0 -114
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py +0 -74
- preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml +0 -179
- preprocess/humanparsing/mhp_extension/detectron2/.clang-format +0 -85
- preprocess/humanparsing/mhp_extension/detectron2/.flake8 +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md +0 -5
- preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md +0 -49
- preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg +0 -1
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md +0 -5
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md +0 -36
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +0 -31
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md +0 -26
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md +0 -45
- preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/.gitignore +0 -46
- preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md +0 -79
- preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md +0 -184
- preprocess/humanparsing/mhp_extension/detectron2/LICENSE +0 -201
- preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md +0 -903
- preprocess/humanparsing/mhp_extension/detectron2/README.md +0 -56
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml +0 -18
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml +0 -31
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml +0 -42
- preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml +0 -24
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml +0 -17
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml +0 -6
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml +0 -6
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml +0 -6
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml +0 -9
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml +0 -13
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml +0 -8
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml +0 -5
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml +0 -8
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml +0 -10
- preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml +0 -9
preprocess/README.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
We support ONNX for humanparsing now
|
|
|
|
preprocess/humanparsing/datasets/__init__.py
DELETED
File without changes
|
preprocess/humanparsing/datasets/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (159 Bytes)
|
|
preprocess/humanparsing/datasets/__pycache__/simple_extractor_dataset.cpython-38.pyc
DELETED
Binary file (2.79 kB)
|
|
preprocess/humanparsing/datasets/datasets.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# -*- encoding: utf-8 -*-
|
3 |
-
|
4 |
-
"""
|
5 |
-
@Author : Peike Li
|
6 |
-
@Contact : peike.li@yahoo.com
|
7 |
-
@File : datasets.py
|
8 |
-
@Time : 8/4/19 3:35 PM
|
9 |
-
@Desc :
|
10 |
-
@License : This source code is licensed under the license found in the
|
11 |
-
LICENSE file in the root directory of this source tree.
|
12 |
-
"""
|
13 |
-
|
14 |
-
import os
|
15 |
-
import numpy as np
|
16 |
-
import random
|
17 |
-
import torch
|
18 |
-
import cv2
|
19 |
-
from torch.utils import data
|
20 |
-
from utils.transforms import get_affine_transform
|
21 |
-
|
22 |
-
|
23 |
-
class LIPDataSet(data.Dataset):
|
24 |
-
def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
|
25 |
-
rotation_factor=30, ignore_label=255, transform=None):
|
26 |
-
self.root = root
|
27 |
-
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
28 |
-
self.crop_size = np.asarray(crop_size)
|
29 |
-
self.ignore_label = ignore_label
|
30 |
-
self.scale_factor = scale_factor
|
31 |
-
self.rotation_factor = rotation_factor
|
32 |
-
self.flip_prob = 0.5
|
33 |
-
self.transform = transform
|
34 |
-
self.dataset = dataset
|
35 |
-
|
36 |
-
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
37 |
-
train_list = [i_id.strip() for i_id in open(list_path)]
|
38 |
-
|
39 |
-
self.train_list = train_list
|
40 |
-
self.number_samples = len(self.train_list)
|
41 |
-
|
42 |
-
def __len__(self):
|
43 |
-
return self.number_samples
|
44 |
-
|
45 |
-
def _box2cs(self, box):
|
46 |
-
x, y, w, h = box[:4]
|
47 |
-
return self._xywh2cs(x, y, w, h)
|
48 |
-
|
49 |
-
def _xywh2cs(self, x, y, w, h):
|
50 |
-
center = np.zeros((2), dtype=np.float32)
|
51 |
-
center[0] = x + w * 0.5
|
52 |
-
center[1] = y + h * 0.5
|
53 |
-
if w > self.aspect_ratio * h:
|
54 |
-
h = w * 1.0 / self.aspect_ratio
|
55 |
-
elif w < self.aspect_ratio * h:
|
56 |
-
w = h * self.aspect_ratio
|
57 |
-
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
58 |
-
return center, scale
|
59 |
-
|
60 |
-
def __getitem__(self, index):
|
61 |
-
train_item = self.train_list[index]
|
62 |
-
|
63 |
-
im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
|
64 |
-
parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
|
65 |
-
|
66 |
-
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
67 |
-
h, w, _ = im.shape
|
68 |
-
parsing_anno = np.zeros((h, w), dtype=np.long)
|
69 |
-
|
70 |
-
# Get person center and scale
|
71 |
-
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
72 |
-
r = 0
|
73 |
-
|
74 |
-
if self.dataset != 'test':
|
75 |
-
# Get pose annotation
|
76 |
-
parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
|
77 |
-
if self.dataset == 'train' or self.dataset == 'trainval':
|
78 |
-
sf = self.scale_factor
|
79 |
-
rf = self.rotation_factor
|
80 |
-
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
|
81 |
-
r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
|
82 |
-
|
83 |
-
if random.random() <= self.flip_prob:
|
84 |
-
im = im[:, ::-1, :]
|
85 |
-
parsing_anno = parsing_anno[:, ::-1]
|
86 |
-
person_center[0] = im.shape[1] - person_center[0] - 1
|
87 |
-
right_idx = [15, 17, 19]
|
88 |
-
left_idx = [14, 16, 18]
|
89 |
-
for i in range(0, 3):
|
90 |
-
right_pos = np.where(parsing_anno == right_idx[i])
|
91 |
-
left_pos = np.where(parsing_anno == left_idx[i])
|
92 |
-
parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
|
93 |
-
parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
|
94 |
-
|
95 |
-
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
96 |
-
input = cv2.warpAffine(
|
97 |
-
im,
|
98 |
-
trans,
|
99 |
-
(int(self.crop_size[1]), int(self.crop_size[0])),
|
100 |
-
flags=cv2.INTER_LINEAR,
|
101 |
-
borderMode=cv2.BORDER_CONSTANT,
|
102 |
-
borderValue=(0, 0, 0))
|
103 |
-
|
104 |
-
if self.transform:
|
105 |
-
input = self.transform(input)
|
106 |
-
|
107 |
-
meta = {
|
108 |
-
'name': train_item,
|
109 |
-
'center': person_center,
|
110 |
-
'height': h,
|
111 |
-
'width': w,
|
112 |
-
'scale': s,
|
113 |
-
'rotation': r
|
114 |
-
}
|
115 |
-
|
116 |
-
if self.dataset == 'val' or self.dataset == 'test':
|
117 |
-
return input, meta
|
118 |
-
else:
|
119 |
-
label_parsing = cv2.warpAffine(
|
120 |
-
parsing_anno,
|
121 |
-
trans,
|
122 |
-
(int(self.crop_size[1]), int(self.crop_size[0])),
|
123 |
-
flags=cv2.INTER_NEAREST,
|
124 |
-
borderMode=cv2.BORDER_CONSTANT,
|
125 |
-
borderValue=(255))
|
126 |
-
|
127 |
-
label_parsing = torch.from_numpy(label_parsing)
|
128 |
-
|
129 |
-
return input, label_parsing, meta
|
130 |
-
|
131 |
-
|
132 |
-
class LIPDataValSet(data.Dataset):
|
133 |
-
def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
|
134 |
-
self.root = root
|
135 |
-
self.crop_size = crop_size
|
136 |
-
self.transform = transform
|
137 |
-
self.flip = flip
|
138 |
-
self.dataset = dataset
|
139 |
-
self.root = root
|
140 |
-
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
141 |
-
self.crop_size = np.asarray(crop_size)
|
142 |
-
|
143 |
-
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
144 |
-
val_list = [i_id.strip() for i_id in open(list_path)]
|
145 |
-
|
146 |
-
self.val_list = val_list
|
147 |
-
self.number_samples = len(self.val_list)
|
148 |
-
|
149 |
-
def __len__(self):
|
150 |
-
return len(self.val_list)
|
151 |
-
|
152 |
-
def _box2cs(self, box):
|
153 |
-
x, y, w, h = box[:4]
|
154 |
-
return self._xywh2cs(x, y, w, h)
|
155 |
-
|
156 |
-
def _xywh2cs(self, x, y, w, h):
|
157 |
-
center = np.zeros((2), dtype=np.float32)
|
158 |
-
center[0] = x + w * 0.5
|
159 |
-
center[1] = y + h * 0.5
|
160 |
-
if w > self.aspect_ratio * h:
|
161 |
-
h = w * 1.0 / self.aspect_ratio
|
162 |
-
elif w < self.aspect_ratio * h:
|
163 |
-
w = h * self.aspect_ratio
|
164 |
-
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
165 |
-
|
166 |
-
return center, scale
|
167 |
-
|
168 |
-
def __getitem__(self, index):
|
169 |
-
val_item = self.val_list[index]
|
170 |
-
# Load training image
|
171 |
-
im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
|
172 |
-
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
173 |
-
h, w, _ = im.shape
|
174 |
-
# Get person center and scale
|
175 |
-
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
176 |
-
r = 0
|
177 |
-
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
178 |
-
input = cv2.warpAffine(
|
179 |
-
im,
|
180 |
-
trans,
|
181 |
-
(int(self.crop_size[1]), int(self.crop_size[0])),
|
182 |
-
flags=cv2.INTER_LINEAR,
|
183 |
-
borderMode=cv2.BORDER_CONSTANT,
|
184 |
-
borderValue=(0, 0, 0))
|
185 |
-
input = self.transform(input)
|
186 |
-
flip_input = input.flip(dims=[-1])
|
187 |
-
if self.flip:
|
188 |
-
batch_input_im = torch.stack([input, flip_input])
|
189 |
-
else:
|
190 |
-
batch_input_im = input
|
191 |
-
|
192 |
-
meta = {
|
193 |
-
'name': val_item,
|
194 |
-
'center': person_center,
|
195 |
-
'height': h,
|
196 |
-
'width': w,
|
197 |
-
'scale': s,
|
198 |
-
'rotation': r
|
199 |
-
}
|
200 |
-
|
201 |
-
return batch_input_im, meta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/datasets/simple_extractor_dataset.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# -*- encoding: utf-8 -*-
|
3 |
-
|
4 |
-
"""
|
5 |
-
@Author : Peike Li
|
6 |
-
@Contact : peike.li@yahoo.com
|
7 |
-
@File : dataset.py
|
8 |
-
@Time : 8/30/19 9:12 PM
|
9 |
-
@Desc : Dataset Definition
|
10 |
-
@License : This source code is licensed under the license found in the
|
11 |
-
LICENSE file in the root directory of this source tree.
|
12 |
-
"""
|
13 |
-
|
14 |
-
import os
|
15 |
-
import pdb
|
16 |
-
|
17 |
-
import cv2
|
18 |
-
import numpy as np
|
19 |
-
from PIL import Image
|
20 |
-
from torch.utils import data
|
21 |
-
from utils.transforms import get_affine_transform
|
22 |
-
|
23 |
-
|
24 |
-
class SimpleFolderDataset(data.Dataset):
|
25 |
-
def __init__(self, root, input_size=[512, 512], transform=None):
|
26 |
-
self.root = root
|
27 |
-
self.input_size = input_size
|
28 |
-
self.transform = transform
|
29 |
-
self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
|
30 |
-
self.input_size = np.asarray(input_size)
|
31 |
-
self.is_pil_image = False
|
32 |
-
if isinstance(root, Image.Image):
|
33 |
-
self.file_list = [root]
|
34 |
-
self.is_pil_image = True
|
35 |
-
elif os.path.isfile(root):
|
36 |
-
self.file_list = [os.path.basename(root)]
|
37 |
-
self.root = os.path.dirname(root)
|
38 |
-
else:
|
39 |
-
self.file_list = os.listdir(self.root)
|
40 |
-
|
41 |
-
def __len__(self):
|
42 |
-
return len(self.file_list)
|
43 |
-
|
44 |
-
def _box2cs(self, box):
|
45 |
-
x, y, w, h = box[:4]
|
46 |
-
return self._xywh2cs(x, y, w, h)
|
47 |
-
|
48 |
-
def _xywh2cs(self, x, y, w, h):
|
49 |
-
center = np.zeros((2), dtype=np.float32)
|
50 |
-
center[0] = x + w * 0.5
|
51 |
-
center[1] = y + h * 0.5
|
52 |
-
if w > self.aspect_ratio * h:
|
53 |
-
h = w * 1.0 / self.aspect_ratio
|
54 |
-
elif w < self.aspect_ratio * h:
|
55 |
-
w = h * self.aspect_ratio
|
56 |
-
scale = np.array([w, h], dtype=np.float32)
|
57 |
-
return center, scale
|
58 |
-
|
59 |
-
def __getitem__(self, index):
|
60 |
-
if self.is_pil_image:
|
61 |
-
img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
|
62 |
-
else:
|
63 |
-
img_name = self.file_list[index]
|
64 |
-
img_path = os.path.join(self.root, img_name)
|
65 |
-
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
66 |
-
h, w, _ = img.shape
|
67 |
-
|
68 |
-
# Get person center and scale
|
69 |
-
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
70 |
-
r = 0
|
71 |
-
trans = get_affine_transform(person_center, s, r, self.input_size)
|
72 |
-
input = cv2.warpAffine(
|
73 |
-
img,
|
74 |
-
trans,
|
75 |
-
(int(self.input_size[1]), int(self.input_size[0])),
|
76 |
-
flags=cv2.INTER_LINEAR,
|
77 |
-
borderMode=cv2.BORDER_CONSTANT,
|
78 |
-
borderValue=(0, 0, 0))
|
79 |
-
|
80 |
-
input = self.transform(input)
|
81 |
-
meta = {
|
82 |
-
'center': person_center,
|
83 |
-
'height': h,
|
84 |
-
'width': w,
|
85 |
-
'scale': s,
|
86 |
-
'rotation': r
|
87 |
-
}
|
88 |
-
|
89 |
-
return input, meta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/datasets/target_generation.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
|
5 |
-
def generate_edge_tensor(label, edge_width=3):
|
6 |
-
label = label.type(torch.cuda.FloatTensor)
|
7 |
-
if len(label.shape) == 2:
|
8 |
-
label = label.unsqueeze(0)
|
9 |
-
n, h, w = label.shape
|
10 |
-
edge = torch.zeros(label.shape, dtype=torch.float).cuda()
|
11 |
-
# right
|
12 |
-
edge_right = edge[:, 1:h, :]
|
13 |
-
edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
|
14 |
-
& (label[:, :h - 1, :] != 255)] = 1
|
15 |
-
|
16 |
-
# up
|
17 |
-
edge_up = edge[:, :, :w - 1]
|
18 |
-
edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
|
19 |
-
& (label[:, :, :w - 1] != 255)
|
20 |
-
& (label[:, :, 1:w] != 255)] = 1
|
21 |
-
|
22 |
-
# upright
|
23 |
-
edge_upright = edge[:, :h - 1, :w - 1]
|
24 |
-
edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
|
25 |
-
& (label[:, :h - 1, :w - 1] != 255)
|
26 |
-
& (label[:, 1:h, 1:w] != 255)] = 1
|
27 |
-
|
28 |
-
# bottomright
|
29 |
-
edge_bottomright = edge[:, :h - 1, 1:w]
|
30 |
-
edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
|
31 |
-
& (label[:, :h - 1, 1:w] != 255)
|
32 |
-
& (label[:, 1:h, :w - 1] != 255)] = 1
|
33 |
-
|
34 |
-
kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda()
|
35 |
-
with torch.no_grad():
|
36 |
-
edge = edge.unsqueeze(1)
|
37 |
-
edge = F.conv2d(edge, kernel, stride=1, padding=1)
|
38 |
-
edge[edge!=0] = 1
|
39 |
-
edge = edge.squeeze()
|
40 |
-
return edge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc
DELETED
Binary file (3.6 kB)
|
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import datetime
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
from PIL import Image
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
import pycococreatortools
|
9 |
-
|
10 |
-
|
11 |
-
def get_arguments():
|
12 |
-
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
13 |
-
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
14 |
-
parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
|
15 |
-
help="path to save coco-style annotation json file")
|
16 |
-
parser.add_argument("--use_val", type=bool, default=False,
|
17 |
-
help="use train+val set for finetuning or not")
|
18 |
-
parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
|
19 |
-
help="train image path")
|
20 |
-
parser.add_argument("--train_anno_dir", type=str,
|
21 |
-
default='../data/instance-level_human_parsing/Training/Human_ids',
|
22 |
-
help="train human mask path")
|
23 |
-
parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
|
24 |
-
help="val image path")
|
25 |
-
parser.add_argument("--val_anno_dir", type=str,
|
26 |
-
default='../data/instance-level_human_parsing/Validation/Human_ids',
|
27 |
-
help="val human mask path")
|
28 |
-
return parser.parse_args()
|
29 |
-
|
30 |
-
|
31 |
-
def main(args):
|
32 |
-
INFO = {
|
33 |
-
"description": args.split_name + " Dataset",
|
34 |
-
"url": "",
|
35 |
-
"version": "",
|
36 |
-
"year": 2019,
|
37 |
-
"contributor": "xyq",
|
38 |
-
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
39 |
-
}
|
40 |
-
|
41 |
-
LICENSES = [
|
42 |
-
{
|
43 |
-
"id": 1,
|
44 |
-
"name": "",
|
45 |
-
"url": ""
|
46 |
-
}
|
47 |
-
]
|
48 |
-
|
49 |
-
CATEGORIES = [
|
50 |
-
{
|
51 |
-
'id': 1,
|
52 |
-
'name': 'person',
|
53 |
-
'supercategory': 'person',
|
54 |
-
},
|
55 |
-
]
|
56 |
-
|
57 |
-
coco_output = {
|
58 |
-
"info": INFO,
|
59 |
-
"licenses": LICENSES,
|
60 |
-
"categories": CATEGORIES,
|
61 |
-
"images": [],
|
62 |
-
"annotations": []
|
63 |
-
}
|
64 |
-
|
65 |
-
image_id = 1
|
66 |
-
segmentation_id = 1
|
67 |
-
|
68 |
-
for image_name in os.listdir(args.train_img_dir):
|
69 |
-
image = Image.open(os.path.join(args.train_img_dir, image_name))
|
70 |
-
image_info = pycococreatortools.create_image_info(
|
71 |
-
image_id, image_name, image.size
|
72 |
-
)
|
73 |
-
coco_output["images"].append(image_info)
|
74 |
-
|
75 |
-
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
76 |
-
human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
|
77 |
-
human_gt_labels = np.unique(human_mask)
|
78 |
-
|
79 |
-
for i in range(1, len(human_gt_labels)):
|
80 |
-
category_info = {'id': 1, 'is_crowd': 0}
|
81 |
-
binary_mask = np.uint8(human_mask == i)
|
82 |
-
annotation_info = pycococreatortools.create_annotation_info(
|
83 |
-
segmentation_id, image_id, category_info, binary_mask,
|
84 |
-
image.size, tolerance=10
|
85 |
-
)
|
86 |
-
if annotation_info is not None:
|
87 |
-
coco_output["annotations"].append(annotation_info)
|
88 |
-
|
89 |
-
segmentation_id += 1
|
90 |
-
image_id += 1
|
91 |
-
|
92 |
-
if not os.path.exists(args.json_save_dir):
|
93 |
-
os.makedirs(args.json_save_dir)
|
94 |
-
if not args.use_val:
|
95 |
-
with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
96 |
-
json.dump(coco_output, output_json_file)
|
97 |
-
else:
|
98 |
-
for image_name in os.listdir(args.val_img_dir):
|
99 |
-
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
100 |
-
image_info = pycococreatortools.create_image_info(
|
101 |
-
image_id, image_name, image.size
|
102 |
-
)
|
103 |
-
coco_output["images"].append(image_info)
|
104 |
-
|
105 |
-
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
106 |
-
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
107 |
-
human_gt_labels = np.unique(human_mask)
|
108 |
-
|
109 |
-
for i in range(1, len(human_gt_labels)):
|
110 |
-
category_info = {'id': 1, 'is_crowd': 0}
|
111 |
-
binary_mask = np.uint8(human_mask == i)
|
112 |
-
annotation_info = pycococreatortools.create_annotation_info(
|
113 |
-
segmentation_id, image_id, category_info, binary_mask,
|
114 |
-
image.size, tolerance=10
|
115 |
-
)
|
116 |
-
if annotation_info is not None:
|
117 |
-
coco_output["annotations"].append(annotation_info)
|
118 |
-
|
119 |
-
segmentation_id += 1
|
120 |
-
image_id += 1
|
121 |
-
|
122 |
-
with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
123 |
-
json.dump(coco_output, output_json_file)
|
124 |
-
|
125 |
-
coco_output_val = {
|
126 |
-
"info": INFO,
|
127 |
-
"licenses": LICENSES,
|
128 |
-
"categories": CATEGORIES,
|
129 |
-
"images": [],
|
130 |
-
"annotations": []
|
131 |
-
}
|
132 |
-
|
133 |
-
image_id_val = 1
|
134 |
-
segmentation_id_val = 1
|
135 |
-
|
136 |
-
for image_name in os.listdir(args.val_img_dir):
|
137 |
-
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
138 |
-
image_info = pycococreatortools.create_image_info(
|
139 |
-
image_id_val, image_name, image.size
|
140 |
-
)
|
141 |
-
coco_output_val["images"].append(image_info)
|
142 |
-
|
143 |
-
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
144 |
-
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
145 |
-
human_gt_labels = np.unique(human_mask)
|
146 |
-
|
147 |
-
for i in range(1, len(human_gt_labels)):
|
148 |
-
category_info = {'id': 1, 'is_crowd': 0}
|
149 |
-
binary_mask = np.uint8(human_mask == i)
|
150 |
-
annotation_info = pycococreatortools.create_annotation_info(
|
151 |
-
segmentation_id_val, image_id_val, category_info, binary_mask,
|
152 |
-
image.size, tolerance=10
|
153 |
-
)
|
154 |
-
if annotation_info is not None:
|
155 |
-
coco_output_val["annotations"].append(annotation_info)
|
156 |
-
|
157 |
-
segmentation_id_val += 1
|
158 |
-
image_id_val += 1
|
159 |
-
|
160 |
-
with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
|
161 |
-
json.dump(coco_output_val, output_json_file_val)
|
162 |
-
|
163 |
-
|
164 |
-
if __name__ == "__main__":
|
165 |
-
args = get_arguments()
|
166 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py
DELETED
@@ -1,114 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
import datetime
|
3 |
-
import numpy as np
|
4 |
-
from itertools import groupby
|
5 |
-
from skimage import measure
|
6 |
-
from PIL import Image
|
7 |
-
from pycocotools import mask
|
8 |
-
|
9 |
-
convert = lambda text: int(text) if text.isdigit() else text.lower()
|
10 |
-
natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
11 |
-
|
12 |
-
|
13 |
-
def resize_binary_mask(array, new_size):
|
14 |
-
image = Image.fromarray(array.astype(np.uint8) * 255)
|
15 |
-
image = image.resize(new_size)
|
16 |
-
return np.asarray(image).astype(np.bool_)
|
17 |
-
|
18 |
-
|
19 |
-
def close_contour(contour):
|
20 |
-
if not np.array_equal(contour[0], contour[-1]):
|
21 |
-
contour = np.vstack((contour, contour[0]))
|
22 |
-
return contour
|
23 |
-
|
24 |
-
|
25 |
-
def binary_mask_to_rle(binary_mask):
|
26 |
-
rle = {'counts': [], 'size': list(binary_mask.shape)}
|
27 |
-
counts = rle.get('counts')
|
28 |
-
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
|
29 |
-
if i == 0 and value == 1:
|
30 |
-
counts.append(0)
|
31 |
-
counts.append(len(list(elements)))
|
32 |
-
|
33 |
-
return rle
|
34 |
-
|
35 |
-
|
36 |
-
def binary_mask_to_polygon(binary_mask, tolerance=0):
|
37 |
-
"""Converts a binary mask to COCO polygon representation
|
38 |
-
Args:
|
39 |
-
binary_mask: a 2D binary numpy array where '1's represent the object
|
40 |
-
tolerance: Maximum distance from original points of polygon to approximated
|
41 |
-
polygonal chain. If tolerance is 0, the original coordinate array is returned.
|
42 |
-
"""
|
43 |
-
polygons = []
|
44 |
-
# pad mask to close contours of shapes which start and end at an edge
|
45 |
-
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
|
46 |
-
contours = measure.find_contours(padded_binary_mask, 0.5)
|
47 |
-
contours = np.subtract(contours, 1)
|
48 |
-
for contour in contours:
|
49 |
-
contour = close_contour(contour)
|
50 |
-
contour = measure.approximate_polygon(contour, tolerance)
|
51 |
-
if len(contour) < 3:
|
52 |
-
continue
|
53 |
-
contour = np.flip(contour, axis=1)
|
54 |
-
segmentation = contour.ravel().tolist()
|
55 |
-
# after padding and subtracting 1 we may get -0.5 points in our segmentation
|
56 |
-
segmentation = [0 if i < 0 else i for i in segmentation]
|
57 |
-
polygons.append(segmentation)
|
58 |
-
|
59 |
-
return polygons
|
60 |
-
|
61 |
-
|
62 |
-
def create_image_info(image_id, file_name, image_size,
|
63 |
-
date_captured=datetime.datetime.utcnow().isoformat(' '),
|
64 |
-
license_id=1, coco_url="", flickr_url=""):
|
65 |
-
image_info = {
|
66 |
-
"id": image_id,
|
67 |
-
"file_name": file_name,
|
68 |
-
"width": image_size[0],
|
69 |
-
"height": image_size[1],
|
70 |
-
"date_captured": date_captured,
|
71 |
-
"license": license_id,
|
72 |
-
"coco_url": coco_url,
|
73 |
-
"flickr_url": flickr_url
|
74 |
-
}
|
75 |
-
|
76 |
-
return image_info
|
77 |
-
|
78 |
-
|
79 |
-
def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
|
80 |
-
image_size=None, tolerance=2, bounding_box=None):
|
81 |
-
if image_size is not None:
|
82 |
-
binary_mask = resize_binary_mask(binary_mask, image_size)
|
83 |
-
|
84 |
-
binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
|
85 |
-
|
86 |
-
area = mask.area(binary_mask_encoded)
|
87 |
-
if area < 1:
|
88 |
-
return None
|
89 |
-
|
90 |
-
if bounding_box is None:
|
91 |
-
bounding_box = mask.toBbox(binary_mask_encoded)
|
92 |
-
|
93 |
-
if category_info["is_crowd"]:
|
94 |
-
is_crowd = 1
|
95 |
-
segmentation = binary_mask_to_rle(binary_mask)
|
96 |
-
else:
|
97 |
-
is_crowd = 0
|
98 |
-
segmentation = binary_mask_to_polygon(binary_mask, tolerance)
|
99 |
-
if not segmentation:
|
100 |
-
return None
|
101 |
-
|
102 |
-
annotation_info = {
|
103 |
-
"id": annotation_id,
|
104 |
-
"image_id": image_id,
|
105 |
-
"category_id": category_info["id"],
|
106 |
-
"iscrowd": is_crowd,
|
107 |
-
"area": area.tolist(),
|
108 |
-
"bbox": bounding_box.tolist(),
|
109 |
-
"segmentation": segmentation,
|
110 |
-
"width": binary_mask.shape[1],
|
111 |
-
"height": binary_mask.shape[0],
|
112 |
-
}
|
113 |
-
|
114 |
-
return annotation_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import datetime
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
import pycococreatortools
|
8 |
-
|
9 |
-
|
10 |
-
def get_arguments():
|
11 |
-
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
12 |
-
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
13 |
-
parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
|
14 |
-
help="path to save coco-style annotation json file")
|
15 |
-
parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
|
16 |
-
help="test image path")
|
17 |
-
return parser.parse_args()
|
18 |
-
|
19 |
-
args = get_arguments()
|
20 |
-
|
21 |
-
INFO = {
|
22 |
-
"description": args.dataset + "Dataset",
|
23 |
-
"url": "",
|
24 |
-
"version": "",
|
25 |
-
"year": 2020,
|
26 |
-
"contributor": "yunqiuxu",
|
27 |
-
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
28 |
-
}
|
29 |
-
|
30 |
-
LICENSES = [
|
31 |
-
{
|
32 |
-
"id": 1,
|
33 |
-
"name": "",
|
34 |
-
"url": ""
|
35 |
-
}
|
36 |
-
]
|
37 |
-
|
38 |
-
CATEGORIES = [
|
39 |
-
{
|
40 |
-
'id': 1,
|
41 |
-
'name': 'person',
|
42 |
-
'supercategory': 'person',
|
43 |
-
},
|
44 |
-
]
|
45 |
-
|
46 |
-
|
47 |
-
def main(args):
|
48 |
-
coco_output = {
|
49 |
-
"info": INFO,
|
50 |
-
"licenses": LICENSES,
|
51 |
-
"categories": CATEGORIES,
|
52 |
-
"images": [],
|
53 |
-
"annotations": []
|
54 |
-
}
|
55 |
-
|
56 |
-
image_id = 1
|
57 |
-
|
58 |
-
for image_name in os.listdir(args.test_img_dir):
|
59 |
-
image = Image.open(os.path.join(args.test_img_dir, image_name))
|
60 |
-
image_info = pycococreatortools.create_image_info(
|
61 |
-
image_id, image_name, image.size
|
62 |
-
)
|
63 |
-
coco_output["images"].append(image_info)
|
64 |
-
image_id += 1
|
65 |
-
|
66 |
-
if not os.path.exists(os.path.join(args.json_save_dir)):
|
67 |
-
os.mkdir(os.path.join(args.json_save_dir))
|
68 |
-
|
69 |
-
with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
|
70 |
-
json.dump(coco_output, output_json_file)
|
71 |
-
|
72 |
-
|
73 |
-
if __name__ == "__main__":
|
74 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml
DELETED
@@ -1,179 +0,0 @@
|
|
1 |
-
# Python CircleCI 2.0 configuration file
|
2 |
-
#
|
3 |
-
# Check https://circleci.com/docs/2.0/language-python/ for more details
|
4 |
-
#
|
5 |
-
version: 2
|
6 |
-
|
7 |
-
# -------------------------------------------------------------------------------------
|
8 |
-
# Environments to run the jobs in
|
9 |
-
# -------------------------------------------------------------------------------------
|
10 |
-
cpu: &cpu
|
11 |
-
docker:
|
12 |
-
- image: circleci/python:3.6.8-stretch
|
13 |
-
resource_class: medium
|
14 |
-
|
15 |
-
gpu: &gpu
|
16 |
-
machine:
|
17 |
-
image: ubuntu-1604:201903-01
|
18 |
-
docker_layer_caching: true
|
19 |
-
resource_class: gpu.small
|
20 |
-
|
21 |
-
# -------------------------------------------------------------------------------------
|
22 |
-
# Re-usable commands
|
23 |
-
# -------------------------------------------------------------------------------------
|
24 |
-
install_python: &install_python
|
25 |
-
- run:
|
26 |
-
name: Install Python
|
27 |
-
working_directory: ~/
|
28 |
-
command: |
|
29 |
-
pyenv install 3.6.1
|
30 |
-
pyenv global 3.6.1
|
31 |
-
|
32 |
-
setup_venv: &setup_venv
|
33 |
-
- run:
|
34 |
-
name: Setup Virtual Env
|
35 |
-
working_directory: ~/
|
36 |
-
command: |
|
37 |
-
python -m venv ~/venv
|
38 |
-
echo ". ~/venv/bin/activate" >> $BASH_ENV
|
39 |
-
. ~/venv/bin/activate
|
40 |
-
python --version
|
41 |
-
which python
|
42 |
-
which pip
|
43 |
-
pip install --upgrade pip
|
44 |
-
|
45 |
-
install_dep: &install_dep
|
46 |
-
- run:
|
47 |
-
name: Install Dependencies
|
48 |
-
command: |
|
49 |
-
pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
|
50 |
-
pip install --progress-bar off cython opencv-python
|
51 |
-
pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
|
52 |
-
pip install --progress-bar off torch torchvision
|
53 |
-
|
54 |
-
install_detectron2: &install_detectron2
|
55 |
-
- run:
|
56 |
-
name: Install Detectron2
|
57 |
-
command: |
|
58 |
-
gcc --version
|
59 |
-
pip install -U --progress-bar off -e .[dev]
|
60 |
-
python -m detectron2.utils.collect_env
|
61 |
-
|
62 |
-
install_nvidia_driver: &install_nvidia_driver
|
63 |
-
- run:
|
64 |
-
name: Install nvidia driver
|
65 |
-
working_directory: ~/
|
66 |
-
command: |
|
67 |
-
wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
|
68 |
-
sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
|
69 |
-
nvidia-smi
|
70 |
-
|
71 |
-
run_unittests: &run_unittests
|
72 |
-
- run:
|
73 |
-
name: Run Unit Tests
|
74 |
-
command: |
|
75 |
-
python -m unittest discover -v -s tests
|
76 |
-
|
77 |
-
# -------------------------------------------------------------------------------------
|
78 |
-
# Jobs to run
|
79 |
-
# -------------------------------------------------------------------------------------
|
80 |
-
jobs:
|
81 |
-
cpu_tests:
|
82 |
-
<<: *cpu
|
83 |
-
|
84 |
-
working_directory: ~/detectron2
|
85 |
-
|
86 |
-
steps:
|
87 |
-
- checkout
|
88 |
-
- <<: *setup_venv
|
89 |
-
|
90 |
-
# Cache the venv directory that contains dependencies
|
91 |
-
- restore_cache:
|
92 |
-
keys:
|
93 |
-
- cache-key-{{ .Branch }}-ID-20200425
|
94 |
-
|
95 |
-
- <<: *install_dep
|
96 |
-
|
97 |
-
- save_cache:
|
98 |
-
paths:
|
99 |
-
- ~/venv
|
100 |
-
key: cache-key-{{ .Branch }}-ID-20200425
|
101 |
-
|
102 |
-
- <<: *install_detectron2
|
103 |
-
|
104 |
-
- run:
|
105 |
-
name: isort
|
106 |
-
command: |
|
107 |
-
isort -c -sp .
|
108 |
-
- run:
|
109 |
-
name: black
|
110 |
-
command: |
|
111 |
-
black --check -l 100 .
|
112 |
-
- run:
|
113 |
-
name: flake8
|
114 |
-
command: |
|
115 |
-
flake8 .
|
116 |
-
|
117 |
-
- <<: *run_unittests
|
118 |
-
|
119 |
-
gpu_tests:
|
120 |
-
<<: *gpu
|
121 |
-
|
122 |
-
working_directory: ~/detectron2
|
123 |
-
|
124 |
-
steps:
|
125 |
-
- checkout
|
126 |
-
- <<: *install_nvidia_driver
|
127 |
-
|
128 |
-
- run:
|
129 |
-
name: Install nvidia-docker
|
130 |
-
working_directory: ~/
|
131 |
-
command: |
|
132 |
-
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
133 |
-
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
134 |
-
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
|
135 |
-
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
136 |
-
sudo apt-get update && sudo apt-get install -y nvidia-docker2
|
137 |
-
# reload the docker daemon configuration
|
138 |
-
sudo pkill -SIGHUP dockerd
|
139 |
-
|
140 |
-
- run:
|
141 |
-
name: Launch docker
|
142 |
-
working_directory: ~/detectron2/docker
|
143 |
-
command: |
|
144 |
-
nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
|
145 |
-
nvidia-docker run -itd --name d2 detectron2:v0
|
146 |
-
docker exec -it d2 nvidia-smi
|
147 |
-
|
148 |
-
- run:
|
149 |
-
name: Build Detectron2
|
150 |
-
command: |
|
151 |
-
docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
|
152 |
-
docker cp ~/detectron2 d2:/detectron2
|
153 |
-
# This will build d2 for the target GPU arch only
|
154 |
-
docker exec -it d2 pip install -e /detectron2
|
155 |
-
docker exec -it d2 python3 -m detectron2.utils.collect_env
|
156 |
-
docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
|
157 |
-
|
158 |
-
- run:
|
159 |
-
name: Run Unit Tests
|
160 |
-
command: |
|
161 |
-
docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
|
162 |
-
|
163 |
-
workflows:
|
164 |
-
version: 2
|
165 |
-
regular_test:
|
166 |
-
jobs:
|
167 |
-
- cpu_tests
|
168 |
-
- gpu_tests
|
169 |
-
|
170 |
-
#nightly_test:
|
171 |
-
#jobs:
|
172 |
-
#- gpu_tests
|
173 |
-
#triggers:
|
174 |
-
#- schedule:
|
175 |
-
#cron: "0 0 * * *"
|
176 |
-
#filters:
|
177 |
-
#branches:
|
178 |
-
#only:
|
179 |
-
#- master
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.clang-format
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
AccessModifierOffset: -1
|
2 |
-
AlignAfterOpenBracket: AlwaysBreak
|
3 |
-
AlignConsecutiveAssignments: false
|
4 |
-
AlignConsecutiveDeclarations: false
|
5 |
-
AlignEscapedNewlinesLeft: true
|
6 |
-
AlignOperands: false
|
7 |
-
AlignTrailingComments: false
|
8 |
-
AllowAllParametersOfDeclarationOnNextLine: false
|
9 |
-
AllowShortBlocksOnASingleLine: false
|
10 |
-
AllowShortCaseLabelsOnASingleLine: false
|
11 |
-
AllowShortFunctionsOnASingleLine: Empty
|
12 |
-
AllowShortIfStatementsOnASingleLine: false
|
13 |
-
AllowShortLoopsOnASingleLine: false
|
14 |
-
AlwaysBreakAfterReturnType: None
|
15 |
-
AlwaysBreakBeforeMultilineStrings: true
|
16 |
-
AlwaysBreakTemplateDeclarations: true
|
17 |
-
BinPackArguments: false
|
18 |
-
BinPackParameters: false
|
19 |
-
BraceWrapping:
|
20 |
-
AfterClass: false
|
21 |
-
AfterControlStatement: false
|
22 |
-
AfterEnum: false
|
23 |
-
AfterFunction: false
|
24 |
-
AfterNamespace: false
|
25 |
-
AfterObjCDeclaration: false
|
26 |
-
AfterStruct: false
|
27 |
-
AfterUnion: false
|
28 |
-
BeforeCatch: false
|
29 |
-
BeforeElse: false
|
30 |
-
IndentBraces: false
|
31 |
-
BreakBeforeBinaryOperators: None
|
32 |
-
BreakBeforeBraces: Attach
|
33 |
-
BreakBeforeTernaryOperators: true
|
34 |
-
BreakConstructorInitializersBeforeComma: false
|
35 |
-
BreakAfterJavaFieldAnnotations: false
|
36 |
-
BreakStringLiterals: false
|
37 |
-
ColumnLimit: 80
|
38 |
-
CommentPragmas: '^ IWYU pragma:'
|
39 |
-
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
40 |
-
ConstructorInitializerIndentWidth: 4
|
41 |
-
ContinuationIndentWidth: 4
|
42 |
-
Cpp11BracedListStyle: true
|
43 |
-
DerivePointerAlignment: false
|
44 |
-
DisableFormat: false
|
45 |
-
ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
|
46 |
-
IncludeCategories:
|
47 |
-
- Regex: '^<.*\.h(pp)?>'
|
48 |
-
Priority: 1
|
49 |
-
- Regex: '^<.*'
|
50 |
-
Priority: 2
|
51 |
-
- Regex: '.*'
|
52 |
-
Priority: 3
|
53 |
-
IndentCaseLabels: true
|
54 |
-
IndentWidth: 2
|
55 |
-
IndentWrappedFunctionNames: false
|
56 |
-
KeepEmptyLinesAtTheStartOfBlocks: false
|
57 |
-
MacroBlockBegin: ''
|
58 |
-
MacroBlockEnd: ''
|
59 |
-
MaxEmptyLinesToKeep: 1
|
60 |
-
NamespaceIndentation: None
|
61 |
-
ObjCBlockIndentWidth: 2
|
62 |
-
ObjCSpaceAfterProperty: false
|
63 |
-
ObjCSpaceBeforeProtocolList: false
|
64 |
-
PenaltyBreakBeforeFirstCallParameter: 1
|
65 |
-
PenaltyBreakComment: 300
|
66 |
-
PenaltyBreakFirstLessLess: 120
|
67 |
-
PenaltyBreakString: 1000
|
68 |
-
PenaltyExcessCharacter: 1000000
|
69 |
-
PenaltyReturnTypeOnItsOwnLine: 200
|
70 |
-
PointerAlignment: Left
|
71 |
-
ReflowComments: true
|
72 |
-
SortIncludes: true
|
73 |
-
SpaceAfterCStyleCast: false
|
74 |
-
SpaceBeforeAssignmentOperators: true
|
75 |
-
SpaceBeforeParens: ControlStatements
|
76 |
-
SpaceInEmptyParentheses: false
|
77 |
-
SpacesBeforeTrailingComments: 1
|
78 |
-
SpacesInAngles: false
|
79 |
-
SpacesInContainerLiterals: true
|
80 |
-
SpacesInCStyleCastParentheses: false
|
81 |
-
SpacesInParentheses: false
|
82 |
-
SpacesInSquareBrackets: false
|
83 |
-
Standard: Cpp11
|
84 |
-
TabWidth: 8
|
85 |
-
UseTab: Never
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.flake8
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
# This is an example .flake8 config, used when developing *Black* itself.
|
2 |
-
# Keep in sync with setup.cfg which is used for source packages.
|
3 |
-
|
4 |
-
[flake8]
|
5 |
-
ignore = W503, E203, E221, C901, C408, E741
|
6 |
-
max-line-length = 100
|
7 |
-
max-complexity = 18
|
8 |
-
select = B,C,E,F,W,T4,B9
|
9 |
-
exclude = build,__init__.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Code of Conduct
|
2 |
-
|
3 |
-
Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
|
4 |
-
Please read the [full text](https://code.fb.com/codeofconduct/)
|
5 |
-
so that you can understand what actions will and will not be tolerated.
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
# Contributing to detectron2
|
2 |
-
|
3 |
-
## Issues
|
4 |
-
We use GitHub issues to track public bugs and questions.
|
5 |
-
Please make sure to follow one of the
|
6 |
-
[issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
|
7 |
-
when reporting any issues.
|
8 |
-
|
9 |
-
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
|
10 |
-
disclosure of security bugs. In those cases, please go through the process
|
11 |
-
outlined on that page and do not file a public issue.
|
12 |
-
|
13 |
-
## Pull Requests
|
14 |
-
We actively welcome your pull requests.
|
15 |
-
|
16 |
-
However, if you're adding any significant features (e.g. > 50 lines), please
|
17 |
-
make sure to have a corresponding issue to discuss your motivation and proposals,
|
18 |
-
before sending a PR. We do not always accept new features, and we take the following
|
19 |
-
factors into consideration:
|
20 |
-
|
21 |
-
1. Whether the same feature can be achieved without modifying detectron2.
|
22 |
-
Detectron2 is designed so that you can implement many extensions from the outside, e.g.
|
23 |
-
those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
|
24 |
-
If some part is not as extensible, you can also bring up the issue to make it more extensible.
|
25 |
-
2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
|
26 |
-
3. Whether the proposed solution has a good design / interface.
|
27 |
-
4. Whether the proposed solution adds extra mental/practical overhead to users who don't
|
28 |
-
need such feature.
|
29 |
-
5. Whether the proposed solution breaks existing APIs.
|
30 |
-
|
31 |
-
When sending a PR, please do:
|
32 |
-
|
33 |
-
1. If a PR contains multiple orthogonal changes, split it to several PRs.
|
34 |
-
2. If you've added code that should be tested, add tests.
|
35 |
-
3. For PRs that need experiments (e.g. adding a new model or new methods),
|
36 |
-
you don't need to update model zoo, but do provide experiment results in the description of the PR.
|
37 |
-
4. If APIs are changed, update the documentation.
|
38 |
-
5. Make sure your code lints with `./dev/linter.sh`.
|
39 |
-
|
40 |
-
|
41 |
-
## Contributor License Agreement ("CLA")
|
42 |
-
In order to accept your pull request, we need you to submit a CLA. You only need
|
43 |
-
to do this once to work on any of Facebook's open source projects.
|
44 |
-
|
45 |
-
Complete your CLA here: <https://code.facebook.com/cla>
|
46 |
-
|
47 |
-
## License
|
48 |
-
By contributing to detectron2, you agree that your contributions will be licensed
|
49 |
-
under the LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
DELETED
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
|
2 |
-
Please select an issue template from
|
3 |
-
https://github.com/facebookresearch/detectron2/issues/new/choose .
|
4 |
-
|
5 |
-
Otherwise your issue will be closed.
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
---
|
2 |
-
name: "🐛 Bugs"
|
3 |
-
about: Report bugs in detectron2
|
4 |
-
title: Please read & provide the following
|
5 |
-
|
6 |
-
---
|
7 |
-
|
8 |
-
## Instructions To Reproduce the 🐛 Bug:
|
9 |
-
|
10 |
-
1. what changes you made (`git diff`) or what code you wrote
|
11 |
-
```
|
12 |
-
<put diff or code here>
|
13 |
-
```
|
14 |
-
2. what exact command you run:
|
15 |
-
3. what you observed (including __full logs__):
|
16 |
-
```
|
17 |
-
<put logs here>
|
18 |
-
```
|
19 |
-
4. please simplify the steps as much as possible so they do not require additional resources to
|
20 |
-
run, such as a private dataset.
|
21 |
-
|
22 |
-
## Expected behavior:
|
23 |
-
|
24 |
-
If there are no obvious error in "what you observed" provided above,
|
25 |
-
please tell us the expected behavior.
|
26 |
-
|
27 |
-
## Environment:
|
28 |
-
|
29 |
-
Provide your environment information using the following command:
|
30 |
-
```
|
31 |
-
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
32 |
-
```
|
33 |
-
|
34 |
-
If your issue looks like an installation issue / environment issue,
|
35 |
-
please first try to solve it yourself with the instructions in
|
36 |
-
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
# require an issue template to be chosen
|
2 |
-
blank_issues_enabled: false
|
3 |
-
|
4 |
-
# Unexpected behaviors & bugs are split to two templates.
|
5 |
-
# When they are one template, users think "it's not a bug" and don't choose the template.
|
6 |
-
#
|
7 |
-
# But the file name is still "unexpected-problems-bugs.md" so that old references
|
8 |
-
# to this issue template still works.
|
9 |
-
# It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
---
|
2 |
-
name: "\U0001F680Feature Request"
|
3 |
-
about: Submit a proposal/request for a new detectron2 feature
|
4 |
-
|
5 |
-
---
|
6 |
-
|
7 |
-
## 🚀 Feature
|
8 |
-
A clear and concise description of the feature proposal.
|
9 |
-
|
10 |
-
|
11 |
-
## Motivation & Examples
|
12 |
-
|
13 |
-
Tell us why the feature is useful.
|
14 |
-
|
15 |
-
Describe what the feature would look like, if it is implemented.
|
16 |
-
Best demonstrated using **code examples** in addition to words.
|
17 |
-
|
18 |
-
## Note
|
19 |
-
|
20 |
-
We only consider adding new features if they are relevant to many users.
|
21 |
-
|
22 |
-
If you request implementation of research papers --
|
23 |
-
we only consider papers that have enough significance and prevalance in the object detection field.
|
24 |
-
|
25 |
-
We do not take requests for most projects in the `projects/` directory,
|
26 |
-
because they are research code release that is mainly for other researchers to reproduce results.
|
27 |
-
|
28 |
-
Instead of adding features inside detectron2,
|
29 |
-
you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
|
30 |
-
The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
---
|
2 |
-
name: "❓How to do something?"
|
3 |
-
about: How to do something using detectron2? What does an API do?
|
4 |
-
|
5 |
-
---
|
6 |
-
|
7 |
-
## ❓ How to do something using detectron2
|
8 |
-
|
9 |
-
Describe what you want to do, including:
|
10 |
-
1. what inputs you will provide, if any:
|
11 |
-
2. what outputs you are expecting:
|
12 |
-
|
13 |
-
## ❓ What does an API do and how to use it?
|
14 |
-
Please link to which API or documentation you're asking about from
|
15 |
-
https://detectron2.readthedocs.io/
|
16 |
-
|
17 |
-
|
18 |
-
NOTE:
|
19 |
-
|
20 |
-
1. Only general answers are provided.
|
21 |
-
If you want to ask about "why X did not work", please use the
|
22 |
-
[Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
|
23 |
-
|
24 |
-
2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
|
25 |
-
|
26 |
-
3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
---
|
2 |
-
name: "Unexpected behaviors"
|
3 |
-
about: Run into unexpected behaviors when using detectron2
|
4 |
-
title: Please read & provide the following
|
5 |
-
|
6 |
-
---
|
7 |
-
|
8 |
-
If you do not know the root cause of the problem, and wish someone to help you, please
|
9 |
-
post according to this template:
|
10 |
-
|
11 |
-
## Instructions To Reproduce the Issue:
|
12 |
-
|
13 |
-
1. what changes you made (`git diff`) or what code you wrote
|
14 |
-
```
|
15 |
-
<put diff or code here>
|
16 |
-
```
|
17 |
-
2. what exact command you run:
|
18 |
-
3. what you observed (including __full logs__):
|
19 |
-
```
|
20 |
-
<put logs here>
|
21 |
-
```
|
22 |
-
4. please simplify the steps as much as possible so they do not require additional resources to
|
23 |
-
run, such as a private dataset.
|
24 |
-
|
25 |
-
## Expected behavior:
|
26 |
-
|
27 |
-
If there are no obvious error in "what you observed" provided above,
|
28 |
-
please tell us the expected behavior.
|
29 |
-
|
30 |
-
If you expect the model to converge / work better, note that we do not give suggestions
|
31 |
-
on how to train a new model.
|
32 |
-
Only in one of the two conditions we will help with it:
|
33 |
-
(1) You're unable to reproduce the results in detectron2 model zoo.
|
34 |
-
(2) It indicates a detectron2 bug.
|
35 |
-
|
36 |
-
## Environment:
|
37 |
-
|
38 |
-
Provide your environment information using the following command:
|
39 |
-
```
|
40 |
-
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
41 |
-
```
|
42 |
-
|
43 |
-
If your issue looks like an installation issue / environment issue,
|
44 |
-
please first try to solve it yourself with the instructions in
|
45 |
-
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
Thanks for your contribution!
|
2 |
-
|
3 |
-
If you're sending a large PR (e.g., >50 lines),
|
4 |
-
please open an issue first about the feature / bug, and indicate how you want to contribute.
|
5 |
-
|
6 |
-
Before submitting a PR, please run `dev/linter.sh` to lint the code.
|
7 |
-
|
8 |
-
See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
|
9 |
-
about how we handle PRs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/.gitignore
DELETED
@@ -1,46 +0,0 @@
|
|
1 |
-
# output dir
|
2 |
-
output
|
3 |
-
instant_test_output
|
4 |
-
inference_test_output
|
5 |
-
|
6 |
-
|
7 |
-
*.jpg
|
8 |
-
*.png
|
9 |
-
*.txt
|
10 |
-
*.json
|
11 |
-
*.diff
|
12 |
-
|
13 |
-
# compilation and distribution
|
14 |
-
__pycache__
|
15 |
-
_ext
|
16 |
-
*.pyc
|
17 |
-
*.so
|
18 |
-
detectron2.egg-info/
|
19 |
-
build/
|
20 |
-
dist/
|
21 |
-
wheels/
|
22 |
-
|
23 |
-
# pytorch/python/numpy formats
|
24 |
-
*.pth
|
25 |
-
*.pkl
|
26 |
-
*.npy
|
27 |
-
|
28 |
-
# ipython/jupyter notebooks
|
29 |
-
*.ipynb
|
30 |
-
**/.ipynb_checkpoints/
|
31 |
-
|
32 |
-
# Editor temporaries
|
33 |
-
*.swn
|
34 |
-
*.swo
|
35 |
-
*.swp
|
36 |
-
*~
|
37 |
-
|
38 |
-
# editor settings
|
39 |
-
.idea
|
40 |
-
.vscode
|
41 |
-
|
42 |
-
# project dirs
|
43 |
-
/detectron2/model_zoo/configs
|
44 |
-
/datasets
|
45 |
-
/projects/*/datasets
|
46 |
-
/models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/GETTING_STARTED.md
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
## Getting Started with Detectron2
|
2 |
-
|
3 |
-
This document provides a brief intro of the usage of builtin command-line tools in detectron2.
|
4 |
-
|
5 |
-
For a tutorial that involves actual coding with the API,
|
6 |
-
see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
7 |
-
which covers how to run inference with an
|
8 |
-
existing model, and how to train a builtin model on a custom dataset.
|
9 |
-
|
10 |
-
For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
|
11 |
-
|
12 |
-
|
13 |
-
### Inference Demo with Pre-trained Models
|
14 |
-
|
15 |
-
1. Pick a model and its config file from
|
16 |
-
[model zoo](MODEL_ZOO.md),
|
17 |
-
for example, `mask_rcnn_R_50_FPN_3x.yaml`.
|
18 |
-
2. We provide `demo.py` that is able to run builtin standard models. Run it with:
|
19 |
-
```
|
20 |
-
cd demo/
|
21 |
-
python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
|
22 |
-
--input input1.jpg input2.jpg \
|
23 |
-
[--other-options]
|
24 |
-
--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
|
25 |
-
```
|
26 |
-
The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
|
27 |
-
This command will run the inference and show visualizations in an OpenCV window.
|
28 |
-
|
29 |
-
For details of the command line arguments, see `demo.py -h` or look at its source code
|
30 |
-
to understand its behavior. Some common arguments are:
|
31 |
-
* To run __on your webcam__, replace `--input files` with `--webcam`.
|
32 |
-
* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
|
33 |
-
* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
|
34 |
-
* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
|
35 |
-
|
36 |
-
|
37 |
-
### Training & Evaluation in Command Line
|
38 |
-
|
39 |
-
We provide a script in "tools/{,plain_}train_net.py", that is made to train
|
40 |
-
all the configs provided in detectron2.
|
41 |
-
You may want to use it as a reference to write your own training script.
|
42 |
-
|
43 |
-
To train a model with "train_net.py", first
|
44 |
-
setup the corresponding datasets following
|
45 |
-
[datasets/README.md](./datasets/README.md),
|
46 |
-
then run:
|
47 |
-
```
|
48 |
-
cd tools/
|
49 |
-
./train_net.py --num-gpus 8 \
|
50 |
-
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
|
51 |
-
```
|
52 |
-
|
53 |
-
The configs are made for 8-GPU training.
|
54 |
-
To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
|
55 |
-
```
|
56 |
-
./train_net.py \
|
57 |
-
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
58 |
-
--num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
|
59 |
-
```
|
60 |
-
|
61 |
-
For most models, CPU training is not supported.
|
62 |
-
|
63 |
-
To evaluate a model's performance, use
|
64 |
-
```
|
65 |
-
./train_net.py \
|
66 |
-
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
67 |
-
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
|
68 |
-
```
|
69 |
-
For more options, see `./train_net.py -h`.
|
70 |
-
|
71 |
-
### Use Detectron2 APIs in Your Code
|
72 |
-
|
73 |
-
See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
74 |
-
to learn how to use detectron2 APIs to:
|
75 |
-
1. run inference with an existing model
|
76 |
-
2. train a builtin model on a custom dataset
|
77 |
-
|
78 |
-
See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
|
79 |
-
for more ways to build your project on detectron2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/INSTALL.md
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
## Installation
|
2 |
-
|
3 |
-
Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
4 |
-
has step-by-step instructions that install detectron2.
|
5 |
-
The [Dockerfile](docker)
|
6 |
-
also installs detectron2 with a few simple commands.
|
7 |
-
|
8 |
-
### Requirements
|
9 |
-
- Linux or macOS with Python ≥ 3.6
|
10 |
-
- PyTorch ≥ 1.4
|
11 |
-
- [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
|
12 |
-
You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
|
13 |
-
- OpenCV, optional, needed by demo and visualization
|
14 |
-
- pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
|
15 |
-
|
16 |
-
|
17 |
-
### Build Detectron2 from Source
|
18 |
-
|
19 |
-
gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
|
20 |
-
After having them, run:
|
21 |
-
```
|
22 |
-
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
|
23 |
-
# (add --user if you don't have permission)
|
24 |
-
|
25 |
-
# Or, to install it from a local clone:
|
26 |
-
git clone https://github.com/facebookresearch/detectron2.git
|
27 |
-
python -m pip install -e detectron2
|
28 |
-
|
29 |
-
# Or if you are on macOS
|
30 |
-
# CC=clang CXX=clang++ python -m pip install -e .
|
31 |
-
```
|
32 |
-
|
33 |
-
To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
|
34 |
-
old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
|
35 |
-
|
36 |
-
### Install Pre-Built Detectron2 (Linux only)
|
37 |
-
```
|
38 |
-
# for CUDA 10.1:
|
39 |
-
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
|
40 |
-
```
|
41 |
-
You can replace cu101 with "cu{100,92}" or "cpu".
|
42 |
-
|
43 |
-
Note that:
|
44 |
-
1. Such installation has to be used with certain version of official PyTorch release.
|
45 |
-
See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
|
46 |
-
It will not work with a different version of PyTorch or a non-official build of PyTorch.
|
47 |
-
2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
|
48 |
-
compatible with the master branch of a research project that uses detectron2 (e.g. those in
|
49 |
-
[projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
|
50 |
-
|
51 |
-
### Common Installation Issues
|
52 |
-
|
53 |
-
If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
|
54 |
-
|
55 |
-
Click each issue for its solutions:
|
56 |
-
|
57 |
-
<details>
|
58 |
-
<summary>
|
59 |
-
Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
|
60 |
-
</summary>
|
61 |
-
<br/>
|
62 |
-
|
63 |
-
This usually happens when detectron2 or torchvision is not
|
64 |
-
compiled with the version of PyTorch you're running.
|
65 |
-
|
66 |
-
Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
|
67 |
-
If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
|
68 |
-
following [pytorch.org](http://pytorch.org). So the versions will match.
|
69 |
-
|
70 |
-
If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
|
71 |
-
to see the corresponding pytorch version required for each pre-built detectron2.
|
72 |
-
|
73 |
-
If the error comes from detectron2 or torchvision that you built manually from source,
|
74 |
-
remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
|
75 |
-
|
76 |
-
If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
|
77 |
-
in your issue.
|
78 |
-
</details>
|
79 |
-
|
80 |
-
<details>
|
81 |
-
<summary>
|
82 |
-
Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
|
83 |
-
</summary>
|
84 |
-
<br/>
|
85 |
-
Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
|
86 |
-
|
87 |
-
This often happens with old anaconda.
|
88 |
-
Try `conda update libgcc`. Then rebuild detectron2.
|
89 |
-
|
90 |
-
The fundamental solution is to run the code with proper C++ runtime.
|
91 |
-
One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
|
92 |
-
|
93 |
-
</details>
|
94 |
-
|
95 |
-
<details>
|
96 |
-
<summary>
|
97 |
-
"Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
|
98 |
-
</summary>
|
99 |
-
<br/>
|
100 |
-
CUDA is not found when building detectron2.
|
101 |
-
You should make sure
|
102 |
-
|
103 |
-
```
|
104 |
-
python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
|
105 |
-
```
|
106 |
-
|
107 |
-
print valid outputs at the time you build detectron2.
|
108 |
-
|
109 |
-
Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
|
110 |
-
</details>
|
111 |
-
|
112 |
-
<details>
|
113 |
-
<summary>
|
114 |
-
"invalid device function" or "no kernel image is available for execution".
|
115 |
-
</summary>
|
116 |
-
<br/>
|
117 |
-
Two possibilities:
|
118 |
-
|
119 |
-
* You build detectron2 with one version of CUDA but run it with a different version.
|
120 |
-
|
121 |
-
To check whether it is the case,
|
122 |
-
use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
123 |
-
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
124 |
-
to contain cuda libraries of the same version.
|
125 |
-
|
126 |
-
When they are inconsistent,
|
127 |
-
you need to either install a different build of PyTorch (or build by yourself)
|
128 |
-
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
129 |
-
|
130 |
-
* Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
|
131 |
-
|
132 |
-
The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
|
133 |
-
`python -m detectron2.utils.collect_env`.
|
134 |
-
|
135 |
-
The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
|
136 |
-
during compilation. This means the compiled code may not work on a different GPU model.
|
137 |
-
To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
|
138 |
-
|
139 |
-
For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
|
140 |
-
Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
|
141 |
-
the correct compute compatibility number for your device.
|
142 |
-
|
143 |
-
</details>
|
144 |
-
|
145 |
-
<details>
|
146 |
-
<summary>
|
147 |
-
Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
|
148 |
-
</summary>
|
149 |
-
<br/>
|
150 |
-
The version of NVCC you use to build detectron2 or torchvision does
|
151 |
-
not match the version of CUDA you are running with.
|
152 |
-
This often happens when using anaconda's CUDA runtime.
|
153 |
-
|
154 |
-
Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
155 |
-
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
156 |
-
to contain cuda libraries of the same version.
|
157 |
-
|
158 |
-
When they are inconsistent,
|
159 |
-
you need to either install a different build of PyTorch (or build by yourself)
|
160 |
-
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
161 |
-
</details>
|
162 |
-
|
163 |
-
|
164 |
-
<details>
|
165 |
-
<summary>
|
166 |
-
"ImportError: cannot import name '_C'".
|
167 |
-
</summary>
|
168 |
-
<br/>
|
169 |
-
Please build and install detectron2 following the instructions above.
|
170 |
-
|
171 |
-
If you are running code from detectron2's root directory, `cd` to a different one.
|
172 |
-
Otherwise you may not import the code that you installed.
|
173 |
-
</details>
|
174 |
-
|
175 |
-
<details>
|
176 |
-
<summary>
|
177 |
-
ONNX conversion segfault after some "TraceWarning".
|
178 |
-
</summary>
|
179 |
-
<br/>
|
180 |
-
The ONNX package is compiled with too old compiler.
|
181 |
-
|
182 |
-
Please build and install ONNX from its source code using a compiler
|
183 |
-
whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
|
184 |
-
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/LICENSE
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright 2019 - present, Facebook, Inc
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/MODEL_ZOO.md
DELETED
@@ -1,903 +0,0 @@
|
|
1 |
-
# Detectron2 Model Zoo and Baselines
|
2 |
-
|
3 |
-
## Introduction
|
4 |
-
|
5 |
-
This file documents a large collection of baselines trained
|
6 |
-
with detectron2 in Sep-Oct, 2019.
|
7 |
-
All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
|
8 |
-
servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
|
9 |
-
You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
|
10 |
-
|
11 |
-
In addition to these official baseline models, you can find more models in [projects/](projects/).
|
12 |
-
|
13 |
-
#### How to Read the Tables
|
14 |
-
* The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
|
15 |
-
and 8 GPUs will reproduce the model.
|
16 |
-
* Training speed is averaged across the entire training.
|
17 |
-
We keep updating the speed with latest version of detectron2/pytorch/etc.,
|
18 |
-
so they might be different from the `metrics` file.
|
19 |
-
Training speed for multi-machine jobs is not provided.
|
20 |
-
* Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
|
21 |
-
with batch size 1 in detectron2 directly.
|
22 |
-
Measuring it with your own code will likely introduce other overhead.
|
23 |
-
Actual deployment in production should in general be faster than the given inference
|
24 |
-
speed due to more optimizations.
|
25 |
-
* The *model id* column is provided for ease of reference.
|
26 |
-
To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
|
27 |
-
* Training curves and other statistics can be found in `metrics` for each model.
|
28 |
-
|
29 |
-
#### Common Settings for COCO Models
|
30 |
-
* All COCO models were trained on `train2017` and evaluated on `val2017`.
|
31 |
-
* The default settings are __not directly comparable__ with Detectron's standard settings.
|
32 |
-
For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
|
33 |
-
|
34 |
-
To make fair comparisons with Detectron's settings, see
|
35 |
-
[Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
|
36 |
-
and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
|
37 |
-
for speed comparison.
|
38 |
-
* For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
|
39 |
-
* __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
|
40 |
-
respectively. It obtains the best
|
41 |
-
speed/accuracy tradeoff, but the other two are still useful for research.
|
42 |
-
* __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
|
43 |
-
* __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
|
44 |
-
for mask and box prediction, respectively.
|
45 |
-
This is used by the Deformable ConvNet paper.
|
46 |
-
* Most models are trained with the 3x schedule (~37 COCO epochs).
|
47 |
-
Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
|
48 |
-
training schedule for comparison when doing quick research iteration.
|
49 |
-
|
50 |
-
#### ImageNet Pretrained Models
|
51 |
-
|
52 |
-
We provide backbone models pretrained on ImageNet-1k dataset.
|
53 |
-
These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
|
54 |
-
* [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
|
55 |
-
* [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
|
56 |
-
* [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
|
57 |
-
|
58 |
-
Pretrained models in Detectron's format can still be used. For example:
|
59 |
-
* [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
|
60 |
-
ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
|
61 |
-
* [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
|
62 |
-
ResNet-50 with Group Normalization.
|
63 |
-
* [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
|
64 |
-
ResNet-101 with Group Normalization.
|
65 |
-
|
66 |
-
Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
|
67 |
-
|
68 |
-
#### License
|
69 |
-
|
70 |
-
All models available for download through this document are licensed under the
|
71 |
-
[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
|
72 |
-
|
73 |
-
### COCO Object Detection Baselines
|
74 |
-
|
75 |
-
#### Faster R-CNN:
|
76 |
-
<!--
|
77 |
-
(fb only) To update the table in vim:
|
78 |
-
1. Remove the old table: d}
|
79 |
-
2. Copy the below command to the place of the table
|
80 |
-
3. :.!bash
|
81 |
-
|
82 |
-
./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
|
83 |
-
-->
|
84 |
-
|
85 |
-
|
86 |
-
<table><tbody>
|
87 |
-
<!-- START TABLE -->
|
88 |
-
<!-- TABLE HEADER -->
|
89 |
-
<th valign="bottom">Name</th>
|
90 |
-
<th valign="bottom">lr<br/>sched</th>
|
91 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
92 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
93 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
94 |
-
<th valign="bottom">box<br/>AP</th>
|
95 |
-
<th valign="bottom">model id</th>
|
96 |
-
<th valign="bottom">download</th>
|
97 |
-
<!-- TABLE BODY -->
|
98 |
-
<!-- ROW: faster_rcnn_R_50_C4_1x -->
|
99 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
100 |
-
<td align="center">1x</td>
|
101 |
-
<td align="center">0.551</td>
|
102 |
-
<td align="center">0.102</td>
|
103 |
-
<td align="center">4.8</td>
|
104 |
-
<td align="center">35.7</td>
|
105 |
-
<td align="center">137257644</td>
|
106 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
|
107 |
-
</tr>
|
108 |
-
<!-- ROW: faster_rcnn_R_50_DC5_1x -->
|
109 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
110 |
-
<td align="center">1x</td>
|
111 |
-
<td align="center">0.380</td>
|
112 |
-
<td align="center">0.068</td>
|
113 |
-
<td align="center">5.0</td>
|
114 |
-
<td align="center">37.3</td>
|
115 |
-
<td align="center">137847829</td>
|
116 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
|
117 |
-
</tr>
|
118 |
-
<!-- ROW: faster_rcnn_R_50_FPN_1x -->
|
119 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
120 |
-
<td align="center">1x</td>
|
121 |
-
<td align="center">0.210</td>
|
122 |
-
<td align="center">0.038</td>
|
123 |
-
<td align="center">3.0</td>
|
124 |
-
<td align="center">37.9</td>
|
125 |
-
<td align="center">137257794</td>
|
126 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
|
127 |
-
</tr>
|
128 |
-
<!-- ROW: faster_rcnn_R_50_C4_3x -->
|
129 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
130 |
-
<td align="center">3x</td>
|
131 |
-
<td align="center">0.543</td>
|
132 |
-
<td align="center">0.104</td>
|
133 |
-
<td align="center">4.8</td>
|
134 |
-
<td align="center">38.4</td>
|
135 |
-
<td align="center">137849393</td>
|
136 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
|
137 |
-
</tr>
|
138 |
-
<!-- ROW: faster_rcnn_R_50_DC5_3x -->
|
139 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
140 |
-
<td align="center">3x</td>
|
141 |
-
<td align="center">0.378</td>
|
142 |
-
<td align="center">0.070</td>
|
143 |
-
<td align="center">5.0</td>
|
144 |
-
<td align="center">39.0</td>
|
145 |
-
<td align="center">137849425</td>
|
146 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
|
147 |
-
</tr>
|
148 |
-
<!-- ROW: faster_rcnn_R_50_FPN_3x -->
|
149 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
150 |
-
<td align="center">3x</td>
|
151 |
-
<td align="center">0.209</td>
|
152 |
-
<td align="center">0.038</td>
|
153 |
-
<td align="center">3.0</td>
|
154 |
-
<td align="center">40.2</td>
|
155 |
-
<td align="center">137849458</td>
|
156 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
|
157 |
-
</tr>
|
158 |
-
<!-- ROW: faster_rcnn_R_101_C4_3x -->
|
159 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
160 |
-
<td align="center">3x</td>
|
161 |
-
<td align="center">0.619</td>
|
162 |
-
<td align="center">0.139</td>
|
163 |
-
<td align="center">5.9</td>
|
164 |
-
<td align="center">41.1</td>
|
165 |
-
<td align="center">138204752</td>
|
166 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
|
167 |
-
</tr>
|
168 |
-
<!-- ROW: faster_rcnn_R_101_DC5_3x -->
|
169 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
170 |
-
<td align="center">3x</td>
|
171 |
-
<td align="center">0.452</td>
|
172 |
-
<td align="center">0.086</td>
|
173 |
-
<td align="center">6.1</td>
|
174 |
-
<td align="center">40.6</td>
|
175 |
-
<td align="center">138204841</td>
|
176 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
|
177 |
-
</tr>
|
178 |
-
<!-- ROW: faster_rcnn_R_101_FPN_3x -->
|
179 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
180 |
-
<td align="center">3x</td>
|
181 |
-
<td align="center">0.286</td>
|
182 |
-
<td align="center">0.051</td>
|
183 |
-
<td align="center">4.1</td>
|
184 |
-
<td align="center">42.0</td>
|
185 |
-
<td align="center">137851257</td>
|
186 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
|
187 |
-
</tr>
|
188 |
-
<!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
|
189 |
-
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
190 |
-
<td align="center">3x</td>
|
191 |
-
<td align="center">0.638</td>
|
192 |
-
<td align="center">0.098</td>
|
193 |
-
<td align="center">6.7</td>
|
194 |
-
<td align="center">43.0</td>
|
195 |
-
<td align="center">139173657</td>
|
196 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
|
197 |
-
</tr>
|
198 |
-
</tbody></table>
|
199 |
-
|
200 |
-
#### RetinaNet:
|
201 |
-
<!--
|
202 |
-
./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
|
203 |
-
-->
|
204 |
-
|
205 |
-
|
206 |
-
<table><tbody>
|
207 |
-
<!-- START TABLE -->
|
208 |
-
<!-- TABLE HEADER -->
|
209 |
-
<th valign="bottom">Name</th>
|
210 |
-
<th valign="bottom">lr<br/>sched</th>
|
211 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
212 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
213 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
214 |
-
<th valign="bottom">box<br/>AP</th>
|
215 |
-
<th valign="bottom">model id</th>
|
216 |
-
<th valign="bottom">download</th>
|
217 |
-
<!-- TABLE BODY -->
|
218 |
-
<!-- ROW: retinanet_R_50_FPN_1x -->
|
219 |
-
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
|
220 |
-
<td align="center">1x</td>
|
221 |
-
<td align="center">0.200</td>
|
222 |
-
<td align="center">0.055</td>
|
223 |
-
<td align="center">3.9</td>
|
224 |
-
<td align="center">36.5</td>
|
225 |
-
<td align="center">137593951</td>
|
226 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/model_final_b796dc.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/metrics.json">metrics</a></td>
|
227 |
-
</tr>
|
228 |
-
<!-- ROW: retinanet_R_50_FPN_3x -->
|
229 |
-
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
|
230 |
-
<td align="center">3x</td>
|
231 |
-
<td align="center">0.201</td>
|
232 |
-
<td align="center">0.055</td>
|
233 |
-
<td align="center">3.9</td>
|
234 |
-
<td align="center">37.9</td>
|
235 |
-
<td align="center">137849486</td>
|
236 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/metrics.json">metrics</a></td>
|
237 |
-
</tr>
|
238 |
-
<!-- ROW: retinanet_R_101_FPN_3x -->
|
239 |
-
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
|
240 |
-
<td align="center">3x</td>
|
241 |
-
<td align="center">0.280</td>
|
242 |
-
<td align="center">0.068</td>
|
243 |
-
<td align="center">5.1</td>
|
244 |
-
<td align="center">39.9</td>
|
245 |
-
<td align="center">138363263</td>
|
246 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/model_final_59f53c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/metrics.json">metrics</a></td>
|
247 |
-
</tr>
|
248 |
-
</tbody></table>
|
249 |
-
|
250 |
-
#### RPN & Fast R-CNN:
|
251 |
-
<!--
|
252 |
-
./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
|
253 |
-
-->
|
254 |
-
|
255 |
-
<table><tbody>
|
256 |
-
<!-- START TABLE -->
|
257 |
-
<!-- TABLE HEADER -->
|
258 |
-
<th valign="bottom">Name</th>
|
259 |
-
<th valign="bottom">lr<br/>sched</th>
|
260 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
261 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
262 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
263 |
-
<th valign="bottom">box<br/>AP</th>
|
264 |
-
<th valign="bottom">prop.<br/>AR</th>
|
265 |
-
<th valign="bottom">model id</th>
|
266 |
-
<th valign="bottom">download</th>
|
267 |
-
<!-- TABLE BODY -->
|
268 |
-
<!-- ROW: rpn_R_50_C4_1x -->
|
269 |
-
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
|
270 |
-
<td align="center">1x</td>
|
271 |
-
<td align="center">0.130</td>
|
272 |
-
<td align="center">0.034</td>
|
273 |
-
<td align="center">1.5</td>
|
274 |
-
<td align="center"></td>
|
275 |
-
<td align="center">51.6</td>
|
276 |
-
<td align="center">137258005</td>
|
277 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
|
278 |
-
</tr>
|
279 |
-
<!-- ROW: rpn_R_50_FPN_1x -->
|
280 |
-
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
|
281 |
-
<td align="center">1x</td>
|
282 |
-
<td align="center">0.186</td>
|
283 |
-
<td align="center">0.032</td>
|
284 |
-
<td align="center">2.7</td>
|
285 |
-
<td align="center"></td>
|
286 |
-
<td align="center">58.0</td>
|
287 |
-
<td align="center">137258492</td>
|
288 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
|
289 |
-
</tr>
|
290 |
-
<!-- ROW: fast_rcnn_R_50_FPN_1x -->
|
291 |
-
<tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
|
292 |
-
<td align="center">1x</td>
|
293 |
-
<td align="center">0.140</td>
|
294 |
-
<td align="center">0.029</td>
|
295 |
-
<td align="center">2.6</td>
|
296 |
-
<td align="center">37.8</td>
|
297 |
-
<td align="center"></td>
|
298 |
-
<td align="center">137635226</td>
|
299 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
|
300 |
-
</tr>
|
301 |
-
</tbody></table>
|
302 |
-
|
303 |
-
### COCO Instance Segmentation Baselines with Mask R-CNN
|
304 |
-
<!--
|
305 |
-
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
306 |
-
-->
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
<table><tbody>
|
311 |
-
<!-- START TABLE -->
|
312 |
-
<!-- TABLE HEADER -->
|
313 |
-
<th valign="bottom">Name</th>
|
314 |
-
<th valign="bottom">lr<br/>sched</th>
|
315 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
316 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
317 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
318 |
-
<th valign="bottom">box<br/>AP</th>
|
319 |
-
<th valign="bottom">mask<br/>AP</th>
|
320 |
-
<th valign="bottom">model id</th>
|
321 |
-
<th valign="bottom">download</th>
|
322 |
-
<!-- TABLE BODY -->
|
323 |
-
<!-- ROW: mask_rcnn_R_50_C4_1x -->
|
324 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
325 |
-
<td align="center">1x</td>
|
326 |
-
<td align="center">0.584</td>
|
327 |
-
<td align="center">0.110</td>
|
328 |
-
<td align="center">5.2</td>
|
329 |
-
<td align="center">36.8</td>
|
330 |
-
<td align="center">32.2</td>
|
331 |
-
<td align="center">137259246</td>
|
332 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
|
333 |
-
</tr>
|
334 |
-
<!-- ROW: mask_rcnn_R_50_DC5_1x -->
|
335 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
336 |
-
<td align="center">1x</td>
|
337 |
-
<td align="center">0.471</td>
|
338 |
-
<td align="center">0.076</td>
|
339 |
-
<td align="center">6.5</td>
|
340 |
-
<td align="center">38.3</td>
|
341 |
-
<td align="center">34.2</td>
|
342 |
-
<td align="center">137260150</td>
|
343 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
|
344 |
-
</tr>
|
345 |
-
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
346 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
347 |
-
<td align="center">1x</td>
|
348 |
-
<td align="center">0.261</td>
|
349 |
-
<td align="center">0.043</td>
|
350 |
-
<td align="center">3.4</td>
|
351 |
-
<td align="center">38.6</td>
|
352 |
-
<td align="center">35.2</td>
|
353 |
-
<td align="center">137260431</td>
|
354 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
355 |
-
</tr>
|
356 |
-
<!-- ROW: mask_rcnn_R_50_C4_3x -->
|
357 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
358 |
-
<td align="center">3x</td>
|
359 |
-
<td align="center">0.575</td>
|
360 |
-
<td align="center">0.111</td>
|
361 |
-
<td align="center">5.2</td>
|
362 |
-
<td align="center">39.8</td>
|
363 |
-
<td align="center">34.4</td>
|
364 |
-
<td align="center">137849525</td>
|
365 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
|
366 |
-
</tr>
|
367 |
-
<!-- ROW: mask_rcnn_R_50_DC5_3x -->
|
368 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
369 |
-
<td align="center">3x</td>
|
370 |
-
<td align="center">0.470</td>
|
371 |
-
<td align="center">0.076</td>
|
372 |
-
<td align="center">6.5</td>
|
373 |
-
<td align="center">40.0</td>
|
374 |
-
<td align="center">35.9</td>
|
375 |
-
<td align="center">137849551</td>
|
376 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
|
377 |
-
</tr>
|
378 |
-
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
379 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
380 |
-
<td align="center">3x</td>
|
381 |
-
<td align="center">0.261</td>
|
382 |
-
<td align="center">0.043</td>
|
383 |
-
<td align="center">3.4</td>
|
384 |
-
<td align="center">41.0</td>
|
385 |
-
<td align="center">37.2</td>
|
386 |
-
<td align="center">137849600</td>
|
387 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
388 |
-
</tr>
|
389 |
-
<!-- ROW: mask_rcnn_R_101_C4_3x -->
|
390 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
391 |
-
<td align="center">3x</td>
|
392 |
-
<td align="center">0.652</td>
|
393 |
-
<td align="center">0.145</td>
|
394 |
-
<td align="center">6.3</td>
|
395 |
-
<td align="center">42.6</td>
|
396 |
-
<td align="center">36.7</td>
|
397 |
-
<td align="center">138363239</td>
|
398 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
|
399 |
-
</tr>
|
400 |
-
<!-- ROW: mask_rcnn_R_101_DC5_3x -->
|
401 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
402 |
-
<td align="center">3x</td>
|
403 |
-
<td align="center">0.545</td>
|
404 |
-
<td align="center">0.092</td>
|
405 |
-
<td align="center">7.6</td>
|
406 |
-
<td align="center">41.9</td>
|
407 |
-
<td align="center">37.3</td>
|
408 |
-
<td align="center">138363294</td>
|
409 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
|
410 |
-
</tr>
|
411 |
-
<!-- ROW: mask_rcnn_R_101_FPN_3x -->
|
412 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
413 |
-
<td align="center">3x</td>
|
414 |
-
<td align="center">0.340</td>
|
415 |
-
<td align="center">0.056</td>
|
416 |
-
<td align="center">4.6</td>
|
417 |
-
<td align="center">42.9</td>
|
418 |
-
<td align="center">38.6</td>
|
419 |
-
<td align="center">138205316</td>
|
420 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
|
421 |
-
</tr>
|
422 |
-
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
|
423 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
424 |
-
<td align="center">3x</td>
|
425 |
-
<td align="center">0.690</td>
|
426 |
-
<td align="center">0.103</td>
|
427 |
-
<td align="center">7.2</td>
|
428 |
-
<td align="center">44.3</td>
|
429 |
-
<td align="center">39.5</td>
|
430 |
-
<td align="center">139653917</td>
|
431 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
|
432 |
-
</tr>
|
433 |
-
</tbody></table>
|
434 |
-
|
435 |
-
### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
|
436 |
-
<!--
|
437 |
-
./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*' --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
|
438 |
-
-->
|
439 |
-
|
440 |
-
|
441 |
-
<table><tbody>
|
442 |
-
<!-- START TABLE -->
|
443 |
-
<!-- TABLE HEADER -->
|
444 |
-
<th valign="bottom">Name</th>
|
445 |
-
<th valign="bottom">lr<br/>sched</th>
|
446 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
447 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
448 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
449 |
-
<th valign="bottom">box<br/>AP</th>
|
450 |
-
<th valign="bottom">kp.<br/>AP</th>
|
451 |
-
<th valign="bottom">model id</th>
|
452 |
-
<th valign="bottom">download</th>
|
453 |
-
<!-- TABLE BODY -->
|
454 |
-
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
455 |
-
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
456 |
-
<td align="center">1x</td>
|
457 |
-
<td align="center">0.315</td>
|
458 |
-
<td align="center">0.072</td>
|
459 |
-
<td align="center">5.0</td>
|
460 |
-
<td align="center">53.6</td>
|
461 |
-
<td align="center">64.0</td>
|
462 |
-
<td align="center">137261548</td>
|
463 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
|
464 |
-
</tr>
|
465 |
-
<!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
|
466 |
-
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
467 |
-
<td align="center">3x</td>
|
468 |
-
<td align="center">0.316</td>
|
469 |
-
<td align="center">0.066</td>
|
470 |
-
<td align="center">5.0</td>
|
471 |
-
<td align="center">55.4</td>
|
472 |
-
<td align="center">65.5</td>
|
473 |
-
<td align="center">137849621</td>
|
474 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
|
475 |
-
</tr>
|
476 |
-
<!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
|
477 |
-
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
478 |
-
<td align="center">3x</td>
|
479 |
-
<td align="center">0.390</td>
|
480 |
-
<td align="center">0.076</td>
|
481 |
-
<td align="center">6.1</td>
|
482 |
-
<td align="center">56.4</td>
|
483 |
-
<td align="center">66.1</td>
|
484 |
-
<td align="center">138363331</td>
|
485 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
|
486 |
-
</tr>
|
487 |
-
<!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
|
488 |
-
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
489 |
-
<td align="center">3x</td>
|
490 |
-
<td align="center">0.738</td>
|
491 |
-
<td align="center">0.121</td>
|
492 |
-
<td align="center">8.7</td>
|
493 |
-
<td align="center">57.3</td>
|
494 |
-
<td align="center">66.0</td>
|
495 |
-
<td align="center">139686956</td>
|
496 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
|
497 |
-
</tr>
|
498 |
-
</tbody></table>
|
499 |
-
|
500 |
-
### COCO Panoptic Segmentation Baselines with Panoptic FPN
|
501 |
-
<!--
|
502 |
-
./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*' --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
|
503 |
-
-->
|
504 |
-
|
505 |
-
|
506 |
-
<table><tbody>
|
507 |
-
<!-- START TABLE -->
|
508 |
-
<!-- TABLE HEADER -->
|
509 |
-
<th valign="bottom">Name</th>
|
510 |
-
<th valign="bottom">lr<br/>sched</th>
|
511 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
512 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
513 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
514 |
-
<th valign="bottom">box<br/>AP</th>
|
515 |
-
<th valign="bottom">mask<br/>AP</th>
|
516 |
-
<th valign="bottom">PQ</th>
|
517 |
-
<th valign="bottom">model id</th>
|
518 |
-
<th valign="bottom">download</th>
|
519 |
-
<!-- TABLE BODY -->
|
520 |
-
<!-- ROW: panoptic_fpn_R_50_1x -->
|
521 |
-
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
|
522 |
-
<td align="center">1x</td>
|
523 |
-
<td align="center">0.304</td>
|
524 |
-
<td align="center">0.053</td>
|
525 |
-
<td align="center">4.8</td>
|
526 |
-
<td align="center">37.6</td>
|
527 |
-
<td align="center">34.7</td>
|
528 |
-
<td align="center">39.4</td>
|
529 |
-
<td align="center">139514544</td>
|
530 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
|
531 |
-
</tr>
|
532 |
-
<!-- ROW: panoptic_fpn_R_50_3x -->
|
533 |
-
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
|
534 |
-
<td align="center">3x</td>
|
535 |
-
<td align="center">0.302</td>
|
536 |
-
<td align="center">0.053</td>
|
537 |
-
<td align="center">4.8</td>
|
538 |
-
<td align="center">40.0</td>
|
539 |
-
<td align="center">36.5</td>
|
540 |
-
<td align="center">41.5</td>
|
541 |
-
<td align="center">139514569</td>
|
542 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
|
543 |
-
</tr>
|
544 |
-
<!-- ROW: panoptic_fpn_R_101_3x -->
|
545 |
-
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
|
546 |
-
<td align="center">3x</td>
|
547 |
-
<td align="center">0.392</td>
|
548 |
-
<td align="center">0.066</td>
|
549 |
-
<td align="center">6.0</td>
|
550 |
-
<td align="center">42.4</td>
|
551 |
-
<td align="center">38.5</td>
|
552 |
-
<td align="center">43.0</td>
|
553 |
-
<td align="center">139514519</td>
|
554 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
|
555 |
-
</tr>
|
556 |
-
</tbody></table>
|
557 |
-
|
558 |
-
|
559 |
-
### LVIS Instance Segmentation Baselines with Mask R-CNN
|
560 |
-
|
561 |
-
Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
|
562 |
-
These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
|
563 |
-
|
564 |
-
NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
|
565 |
-
They are roughly 24 epochs of LVISv0.5 data.
|
566 |
-
The final results of these configs have large variance across different runs.
|
567 |
-
|
568 |
-
<!--
|
569 |
-
./gen_html_table.py --config 'LVIS-InstanceSegmentation/mask*50*' 'LVIS-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
570 |
-
-->
|
571 |
-
|
572 |
-
|
573 |
-
<table><tbody>
|
574 |
-
<!-- START TABLE -->
|
575 |
-
<!-- TABLE HEADER -->
|
576 |
-
<th valign="bottom">Name</th>
|
577 |
-
<th valign="bottom">lr<br/>sched</th>
|
578 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
579 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
580 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
581 |
-
<th valign="bottom">box<br/>AP</th>
|
582 |
-
<th valign="bottom">mask<br/>AP</th>
|
583 |
-
<th valign="bottom">model id</th>
|
584 |
-
<th valign="bottom">download</th>
|
585 |
-
<!-- TABLE BODY -->
|
586 |
-
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
587 |
-
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
588 |
-
<td align="center">1x</td>
|
589 |
-
<td align="center">0.292</td>
|
590 |
-
<td align="center">0.107</td>
|
591 |
-
<td align="center">7.1</td>
|
592 |
-
<td align="center">23.6</td>
|
593 |
-
<td align="center">24.4</td>
|
594 |
-
<td align="center">144219072</td>
|
595 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
|
596 |
-
</tr>
|
597 |
-
<!-- ROW: mask_rcnn_R_101_FPN_1x -->
|
598 |
-
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
|
599 |
-
<td align="center">1x</td>
|
600 |
-
<td align="center">0.371</td>
|
601 |
-
<td align="center">0.114</td>
|
602 |
-
<td align="center">7.8</td>
|
603 |
-
<td align="center">25.6</td>
|
604 |
-
<td align="center">25.9</td>
|
605 |
-
<td align="center">144219035</td>
|
606 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
|
607 |
-
</tr>
|
608 |
-
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
|
609 |
-
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
|
610 |
-
<td align="center">1x</td>
|
611 |
-
<td align="center">0.712</td>
|
612 |
-
<td align="center">0.151</td>
|
613 |
-
<td align="center">10.2</td>
|
614 |
-
<td align="center">26.7</td>
|
615 |
-
<td align="center">27.1</td>
|
616 |
-
<td align="center">144219108</td>
|
617 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
|
618 |
-
</tr>
|
619 |
-
</tbody></table>
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
### Cityscapes & Pascal VOC Baselines
|
624 |
-
|
625 |
-
Simple baselines for
|
626 |
-
* Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
|
627 |
-
* Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
|
628 |
-
|
629 |
-
<!--
|
630 |
-
./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
|
631 |
-
-->
|
632 |
-
|
633 |
-
|
634 |
-
<table><tbody>
|
635 |
-
<!-- START TABLE -->
|
636 |
-
<!-- TABLE HEADER -->
|
637 |
-
<th valign="bottom">Name</th>
|
638 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
639 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
640 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
641 |
-
<th valign="bottom">box<br/>AP</th>
|
642 |
-
<th valign="bottom">box<br/>AP50</th>
|
643 |
-
<th valign="bottom">mask<br/>AP</th>
|
644 |
-
<th valign="bottom">model id</th>
|
645 |
-
<th valign="bottom">download</th>
|
646 |
-
<!-- TABLE BODY -->
|
647 |
-
<!-- ROW: mask_rcnn_R_50_FPN -->
|
648 |
-
<tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
|
649 |
-
<td align="center">0.240</td>
|
650 |
-
<td align="center">0.078</td>
|
651 |
-
<td align="center">4.4</td>
|
652 |
-
<td align="center"></td>
|
653 |
-
<td align="center"></td>
|
654 |
-
<td align="center">36.5</td>
|
655 |
-
<td align="center">142423278</td>
|
656 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
|
657 |
-
</tr>
|
658 |
-
<!-- ROW: faster_rcnn_R_50_C4 -->
|
659 |
-
<tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
|
660 |
-
<td align="center">0.537</td>
|
661 |
-
<td align="center">0.081</td>
|
662 |
-
<td align="center">4.8</td>
|
663 |
-
<td align="center">51.9</td>
|
664 |
-
<td align="center">80.3</td>
|
665 |
-
<td align="center"></td>
|
666 |
-
<td align="center">142202221</td>
|
667 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
|
668 |
-
</tr>
|
669 |
-
</tbody></table>
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
### Other Settings
|
674 |
-
|
675 |
-
Ablations for Deformable Conv and Cascade R-CNN:
|
676 |
-
|
677 |
-
<!--
|
678 |
-
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
679 |
-
-->
|
680 |
-
|
681 |
-
|
682 |
-
<table><tbody>
|
683 |
-
<!-- START TABLE -->
|
684 |
-
<!-- TABLE HEADER -->
|
685 |
-
<th valign="bottom">Name</th>
|
686 |
-
<th valign="bottom">lr<br/>sched</th>
|
687 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
688 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
689 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
690 |
-
<th valign="bottom">box<br/>AP</th>
|
691 |
-
<th valign="bottom">mask<br/>AP</th>
|
692 |
-
<th valign="bottom">model id</th>
|
693 |
-
<th valign="bottom">download</th>
|
694 |
-
<!-- TABLE BODY -->
|
695 |
-
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
696 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
|
697 |
-
<td align="center">1x</td>
|
698 |
-
<td align="center">0.261</td>
|
699 |
-
<td align="center">0.043</td>
|
700 |
-
<td align="center">3.4</td>
|
701 |
-
<td align="center">38.6</td>
|
702 |
-
<td align="center">35.2</td>
|
703 |
-
<td align="center">137260431</td>
|
704 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
705 |
-
</tr>
|
706 |
-
<!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
|
707 |
-
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
708 |
-
<td align="center">1x</td>
|
709 |
-
<td align="center">0.342</td>
|
710 |
-
<td align="center">0.048</td>
|
711 |
-
<td align="center">3.5</td>
|
712 |
-
<td align="center">41.5</td>
|
713 |
-
<td align="center">37.5</td>
|
714 |
-
<td align="center">138602867</td>
|
715 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
|
716 |
-
</tr>
|
717 |
-
<!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
|
718 |
-
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
|
719 |
-
<td align="center">1x</td>
|
720 |
-
<td align="center">0.317</td>
|
721 |
-
<td align="center">0.052</td>
|
722 |
-
<td align="center">4.0</td>
|
723 |
-
<td align="center">42.1</td>
|
724 |
-
<td align="center">36.4</td>
|
725 |
-
<td align="center">138602847</td>
|
726 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
|
727 |
-
</tr>
|
728 |
-
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
729 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
730 |
-
<td align="center">3x</td>
|
731 |
-
<td align="center">0.261</td>
|
732 |
-
<td align="center">0.043</td>
|
733 |
-
<td align="center">3.4</td>
|
734 |
-
<td align="center">41.0</td>
|
735 |
-
<td align="center">37.2</td>
|
736 |
-
<td align="center">137849600</td>
|
737 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
738 |
-
</tr>
|
739 |
-
<!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
|
740 |
-
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
741 |
-
<td align="center">3x</td>
|
742 |
-
<td align="center">0.349</td>
|
743 |
-
<td align="center">0.047</td>
|
744 |
-
<td align="center">3.5</td>
|
745 |
-
<td align="center">42.7</td>
|
746 |
-
<td align="center">38.5</td>
|
747 |
-
<td align="center">144998336</td>
|
748 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
|
749 |
-
</tr>
|
750 |
-
<!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
|
751 |
-
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
|
752 |
-
<td align="center">3x</td>
|
753 |
-
<td align="center">0.328</td>
|
754 |
-
<td align="center">0.053</td>
|
755 |
-
<td align="center">4.0</td>
|
756 |
-
<td align="center">44.3</td>
|
757 |
-
<td align="center">38.5</td>
|
758 |
-
<td align="center">144998488</td>
|
759 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
|
760 |
-
</tr>
|
761 |
-
</tbody></table>
|
762 |
-
|
763 |
-
|
764 |
-
Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
|
765 |
-
(Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
|
766 |
-
<!--
|
767 |
-
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
768 |
-
-->
|
769 |
-
|
770 |
-
|
771 |
-
<table><tbody>
|
772 |
-
<!-- START TABLE -->
|
773 |
-
<!-- TABLE HEADER -->
|
774 |
-
<th valign="bottom">Name</th>
|
775 |
-
<th valign="bottom">lr<br/>sched</th>
|
776 |
-
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
777 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
778 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
779 |
-
<th valign="bottom">box<br/>AP</th>
|
780 |
-
<th valign="bottom">mask<br/>AP</th>
|
781 |
-
<th valign="bottom">model id</th>
|
782 |
-
<th valign="bottom">download</th>
|
783 |
-
<!-- TABLE BODY -->
|
784 |
-
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
785 |
-
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
786 |
-
<td align="center">3x</td>
|
787 |
-
<td align="center">0.261</td>
|
788 |
-
<td align="center">0.043</td>
|
789 |
-
<td align="center">3.4</td>
|
790 |
-
<td align="center">41.0</td>
|
791 |
-
<td align="center">37.2</td>
|
792 |
-
<td align="center">137849600</td>
|
793 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
794 |
-
</tr>
|
795 |
-
<!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
|
796 |
-
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
|
797 |
-
<td align="center">3x</td>
|
798 |
-
<td align="center">0.356</td>
|
799 |
-
<td align="center">0.069</td>
|
800 |
-
<td align="center">7.3</td>
|
801 |
-
<td align="center">42.6</td>
|
802 |
-
<td align="center">38.6</td>
|
803 |
-
<td align="center">138602888</td>
|
804 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
|
805 |
-
</tr>
|
806 |
-
<!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
|
807 |
-
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
|
808 |
-
<td align="center">3x</td>
|
809 |
-
<td align="center">0.371</td>
|
810 |
-
<td align="center">0.053</td>
|
811 |
-
<td align="center">5.5</td>
|
812 |
-
<td align="center">41.9</td>
|
813 |
-
<td align="center">37.8</td>
|
814 |
-
<td align="center">169527823</td>
|
815 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
|
816 |
-
</tr>
|
817 |
-
<!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
|
818 |
-
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
|
819 |
-
<td align="center">3x</td>
|
820 |
-
<td align="center">0.400</td>
|
821 |
-
<td align="center">0.069</td>
|
822 |
-
<td align="center">9.8</td>
|
823 |
-
<td align="center">39.9</td>
|
824 |
-
<td align="center">36.6</td>
|
825 |
-
<td align="center">138602908</td>
|
826 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
|
827 |
-
</tr>
|
828 |
-
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
|
829 |
-
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
|
830 |
-
<td align="center">9x</td>
|
831 |
-
<td align="center">N/A</td>
|
832 |
-
<td align="center">0.070</td>
|
833 |
-
<td align="center">9.8</td>
|
834 |
-
<td align="center">43.7</td>
|
835 |
-
<td align="center">39.6</td>
|
836 |
-
<td align="center">183808979</td>
|
837 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
|
838 |
-
</tr>
|
839 |
-
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
|
840 |
-
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
|
841 |
-
<td align="center">9x</td>
|
842 |
-
<td align="center">N/A</td>
|
843 |
-
<td align="center">0.055</td>
|
844 |
-
<td align="center">7.2</td>
|
845 |
-
<td align="center">43.6</td>
|
846 |
-
<td align="center">39.3</td>
|
847 |
-
<td align="center">184226666</td>
|
848 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
|
849 |
-
</tr>
|
850 |
-
</tbody></table>
|
851 |
-
|
852 |
-
|
853 |
-
A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
|
854 |
-
|
855 |
-
<!--
|
856 |
-
./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
|
857 |
-
# manually add TTA results
|
858 |
-
-->
|
859 |
-
|
860 |
-
|
861 |
-
<table><tbody>
|
862 |
-
<!-- START TABLE -->
|
863 |
-
<!-- TABLE HEADER -->
|
864 |
-
<th valign="bottom">Name</th>
|
865 |
-
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
866 |
-
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
867 |
-
<th valign="bottom">box<br/>AP</th>
|
868 |
-
<th valign="bottom">mask<br/>AP</th>
|
869 |
-
<th valign="bottom">PQ</th>
|
870 |
-
<th valign="bottom">model id</th>
|
871 |
-
<th valign="bottom">download</th>
|
872 |
-
<!-- TABLE BODY -->
|
873 |
-
<!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
|
874 |
-
<tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
|
875 |
-
<td align="center">0.107</td>
|
876 |
-
<td align="center">11.4</td>
|
877 |
-
<td align="center">47.4</td>
|
878 |
-
<td align="center">41.3</td>
|
879 |
-
<td align="center">46.1</td>
|
880 |
-
<td align="center">139797668</td>
|
881 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
|
882 |
-
</tr>
|
883 |
-
<!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
884 |
-
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
|
885 |
-
<td align="center">0.242</td>
|
886 |
-
<td align="center">15.1</td>
|
887 |
-
<td align="center">50.2</td>
|
888 |
-
<td align="center">44.0</td>
|
889 |
-
<td align="center"></td>
|
890 |
-
<td align="center">18131413</td>
|
891 |
-
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
|
892 |
-
</tr>
|
893 |
-
<!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
894 |
-
<tr><td align="left">above + test-time aug.</td>
|
895 |
-
<td align="center"></td>
|
896 |
-
<td align="center"></td>
|
897 |
-
<td align="center">51.9</td>
|
898 |
-
<td align="center">45.9</td>
|
899 |
-
<td align="center"></td>
|
900 |
-
<td align="center"></td>
|
901 |
-
<td align="center"></td>
|
902 |
-
</tr>
|
903 |
-
</tbody></table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/README.md
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
<img src=".github/Detectron2-Logo-Horz.svg" width="300" >
|
2 |
-
|
3 |
-
Detectron2 is Facebook AI Research's next generation software system
|
4 |
-
that implements state-of-the-art object detection algorithms.
|
5 |
-
It is a ground-up rewrite of the previous version,
|
6 |
-
[Detectron](https://github.com/facebookresearch/Detectron/),
|
7 |
-
and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
|
8 |
-
|
9 |
-
<div align="center">
|
10 |
-
<img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
|
11 |
-
</div>
|
12 |
-
|
13 |
-
### What's New
|
14 |
-
* It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
|
15 |
-
* Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
|
16 |
-
* Can be used as a library to support [different projects](projects/) on top of it.
|
17 |
-
We'll open source more research projects in this way.
|
18 |
-
* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
19 |
-
|
20 |
-
See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
|
21 |
-
to see more demos and learn about detectron2.
|
22 |
-
|
23 |
-
## Installation
|
24 |
-
|
25 |
-
See [INSTALL.md](INSTALL.md).
|
26 |
-
|
27 |
-
## Quick Start
|
28 |
-
|
29 |
-
See [GETTING_STARTED.md](GETTING_STARTED.md),
|
30 |
-
or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
|
31 |
-
|
32 |
-
Learn more at our [documentation](https://detectron2.readthedocs.org).
|
33 |
-
And see [projects/](projects/) for some projects that are built on top of detectron2.
|
34 |
-
|
35 |
-
## Model Zoo and Baselines
|
36 |
-
|
37 |
-
We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
|
38 |
-
|
39 |
-
|
40 |
-
## License
|
41 |
-
|
42 |
-
Detectron2 is released under the [Apache 2.0 license](LICENSE).
|
43 |
-
|
44 |
-
## Citing Detectron2
|
45 |
-
|
46 |
-
If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
|
47 |
-
|
48 |
-
```BibTeX
|
49 |
-
@misc{wu2019detectron2,
|
50 |
-
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
|
51 |
-
Wan-Yen Lo and Ross Girshick},
|
52 |
-
title = {Detectron2},
|
53 |
-
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
|
54 |
-
year = {2019}
|
55 |
-
}
|
56 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
MODEL:
|
2 |
-
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
-
RPN:
|
4 |
-
PRE_NMS_TOPK_TEST: 6000
|
5 |
-
POST_NMS_TOPK_TEST: 1000
|
6 |
-
ROI_HEADS:
|
7 |
-
NAME: "Res5ROIHeads"
|
8 |
-
DATASETS:
|
9 |
-
TRAIN: ("coco_2017_train",)
|
10 |
-
TEST: ("coco_2017_val",)
|
11 |
-
SOLVER:
|
12 |
-
IMS_PER_BATCH: 16
|
13 |
-
BASE_LR: 0.02
|
14 |
-
STEPS: (60000, 80000)
|
15 |
-
MAX_ITER: 90000
|
16 |
-
INPUT:
|
17 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
18 |
-
VERSION: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
MODEL:
|
2 |
-
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
-
RESNETS:
|
4 |
-
OUT_FEATURES: ["res5"]
|
5 |
-
RES5_DILATION: 2
|
6 |
-
RPN:
|
7 |
-
IN_FEATURES: ["res5"]
|
8 |
-
PRE_NMS_TOPK_TEST: 6000
|
9 |
-
POST_NMS_TOPK_TEST: 1000
|
10 |
-
ROI_HEADS:
|
11 |
-
NAME: "StandardROIHeads"
|
12 |
-
IN_FEATURES: ["res5"]
|
13 |
-
ROI_BOX_HEAD:
|
14 |
-
NAME: "FastRCNNConvFCHead"
|
15 |
-
NUM_FC: 2
|
16 |
-
POOLER_RESOLUTION: 7
|
17 |
-
ROI_MASK_HEAD:
|
18 |
-
NAME: "MaskRCNNConvUpsampleHead"
|
19 |
-
NUM_CONV: 4
|
20 |
-
POOLER_RESOLUTION: 14
|
21 |
-
DATASETS:
|
22 |
-
TRAIN: ("coco_2017_train",)
|
23 |
-
TEST: ("coco_2017_val",)
|
24 |
-
SOLVER:
|
25 |
-
IMS_PER_BATCH: 16
|
26 |
-
BASE_LR: 0.02
|
27 |
-
STEPS: (60000, 80000)
|
28 |
-
MAX_ITER: 90000
|
29 |
-
INPUT:
|
30 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
31 |
-
VERSION: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RCNN-FPN.yaml
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
MODEL:
|
2 |
-
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
-
BACKBONE:
|
4 |
-
NAME: "build_resnet_fpn_backbone"
|
5 |
-
RESNETS:
|
6 |
-
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
-
FPN:
|
8 |
-
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
-
ANCHOR_GENERATOR:
|
10 |
-
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
-
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
-
RPN:
|
13 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
-
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
-
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
-
# Detectron1 uses 2000 proposals per-batch,
|
17 |
-
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
-
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
-
POST_NMS_TOPK_TRAIN: 1000
|
20 |
-
POST_NMS_TOPK_TEST: 1000
|
21 |
-
ROI_HEADS:
|
22 |
-
NAME: "StandardROIHeads"
|
23 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
-
ROI_BOX_HEAD:
|
25 |
-
NAME: "FastRCNNConvFCHead"
|
26 |
-
NUM_FC: 2
|
27 |
-
POOLER_RESOLUTION: 7
|
28 |
-
ROI_MASK_HEAD:
|
29 |
-
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
-
NUM_CONV: 4
|
31 |
-
POOLER_RESOLUTION: 14
|
32 |
-
DATASETS:
|
33 |
-
TRAIN: ("coco_2017_train",)
|
34 |
-
TEST: ("coco_2017_val",)
|
35 |
-
SOLVER:
|
36 |
-
IMS_PER_BATCH: 16
|
37 |
-
BASE_LR: 0.02
|
38 |
-
STEPS: (60000, 80000)
|
39 |
-
MAX_ITER: 90000
|
40 |
-
INPUT:
|
41 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
42 |
-
VERSION: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/Base-RetinaNet.yaml
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
MODEL:
|
2 |
-
META_ARCHITECTURE: "RetinaNet"
|
3 |
-
BACKBONE:
|
4 |
-
NAME: "build_retinanet_resnet_fpn_backbone"
|
5 |
-
RESNETS:
|
6 |
-
OUT_FEATURES: ["res3", "res4", "res5"]
|
7 |
-
ANCHOR_GENERATOR:
|
8 |
-
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
9 |
-
FPN:
|
10 |
-
IN_FEATURES: ["res3", "res4", "res5"]
|
11 |
-
RETINANET:
|
12 |
-
IOU_THRESHOLDS: [0.4, 0.5]
|
13 |
-
IOU_LABELS: [0, -1, 1]
|
14 |
-
DATASETS:
|
15 |
-
TRAIN: ("coco_2017_train",)
|
16 |
-
TEST: ("coco_2017_val",)
|
17 |
-
SOLVER:
|
18 |
-
IMS_PER_BATCH: 16
|
19 |
-
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
20 |
-
STEPS: (60000, 80000)
|
21 |
-
MAX_ITER: 90000
|
22 |
-
INPUT:
|
23 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
24 |
-
VERSION: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
LOAD_PROPOSALS: True
|
6 |
-
RESNETS:
|
7 |
-
DEPTH: 50
|
8 |
-
PROPOSAL_GENERATOR:
|
9 |
-
NAME: "PrecomputedProposals"
|
10 |
-
DATASETS:
|
11 |
-
TRAIN: ("coco_2017_train",)
|
12 |
-
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
13 |
-
TEST: ("coco_2017_val",)
|
14 |
-
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
15 |
-
DATALOADER:
|
16 |
-
# proposals are part of the dataset_dicts, and take a lot of RAM
|
17 |
-
NUM_WORKERS: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
MASK_ON: False
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
-
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
-
RESNETS:
|
7 |
-
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
-
NUM_GROUPS: 32
|
9 |
-
WIDTH_PER_GROUP: 8
|
10 |
-
DEPTH: 101
|
11 |
-
SOLVER:
|
12 |
-
STEPS: (210000, 250000)
|
13 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
-
MASK_ON: False
|
6 |
-
RESNETS:
|
7 |
-
DEPTH: 50
|
8 |
-
RPN:
|
9 |
-
PRE_NMS_TOPK_TEST: 12000
|
10 |
-
POST_NMS_TOPK_TEST: 2000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess/humanparsing/mhp_extension/detectron2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
-
MASK_ON: False
|
6 |
-
RESNETS:
|
7 |
-
DEPTH: 50
|
8 |
-
RPN:
|
9 |
-
POST_NMS_TOPK_TEST: 2000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|