File size: 11,164 Bytes
7f1f1cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
from PIL import Image
import cv2
import torch
from torch.utils import data
from torchvision import transforms
from torchvision.transforms import functional as F
import numbers
import numpy as np
import random

#re_size = (256, 256)
#cr_size = (224, 224)

class ImageDataTrain(data.Dataset):
    def __init__(self):

        self.sal_root = '/home/liuj/dataset/DUTS/DUTS-TR'
        self.sal_source = '/home/liuj/dataset/DUTS/DUTS-TR/train_pair_edge.lst'

        with open(self.sal_source, 'r') as f:
            self.sal_list = [x.strip() for x in f.readlines()]

        self.sal_num = len(self.sal_list)


    def __getitem__(self, item):


        sal_image = load_image(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[0]))
        sal_label = load_sal_label(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[1]))
        sal_edge = load_edge_label(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[2]))
        sal_image, sal_label, sal_edge = cv_random_flip(sal_image, sal_label, sal_edge)
        sal_image = torch.Tensor(sal_image)
        sal_label = torch.Tensor(sal_label)
        sal_edge = torch.Tensor(sal_edge)

        sample = {'sal_image': sal_image, 'sal_label': sal_label, 'sal_edge': sal_edge}
        return sample

    def __len__(self):
        # return max(max(self.edge_num, self.sal_num), self.skel_num)
        return self.sal_num

class ImageDataTest(data.Dataset):
    def __init__(self, test_mode=1, sal_mode='e'):
        if test_mode == 0:
            # self.image_root = '/home/liuj/dataset/saliency_test/ECSSD/Imgs/'
            # self.image_source = '/home/liuj/dataset/saliency_test/ECSSD/test.lst'
            self.image_root = '/home/liuj/dataset/HED-BSDS_PASCAL/HED-BSDS/test/'
            self.image_source = '/home/liuj/dataset/HED-BSDS_PASCAL/HED-BSDS/test.lst'
            
            
        elif test_mode == 1:
            if sal_mode == 'e':
                self.image_root = '/home/liuj/dataset/saliency_test/ECSSD/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/ECSSD/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/ECSSD/'
            elif sal_mode == 'p':
                self.image_root = '/home/liuj/dataset/saliency_test/PASCALS/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/PASCALS/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/PASCALS/'
            elif sal_mode == 'd':
                self.image_root = '/home/liuj/dataset/saliency_test/DUTOMRON/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/DUTOMRON/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/DUTOMRON/'
            elif sal_mode == 'h':
                self.image_root = '/home/liuj/dataset/saliency_test/HKU-IS/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/HKU-IS/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/HKU-IS/'
            elif sal_mode == 's':
                self.image_root = '/home/liuj/dataset/saliency_test/SOD/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/SOD/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/SOD/'
            elif sal_mode == 'm':
                self.image_root = '/home/liuj/dataset/saliency_test/MSRA/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/MSRA/test.lst'
            elif sal_mode == 'o':
                self.image_root = '/home/liuj/dataset/saliency_test/SOC/TestSet/Imgs/'
                self.image_source = '/home/liuj/dataset/saliency_test/SOC/TestSet/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/SOC/'
            elif sal_mode == 't':
                self.image_root = '/home/liuj/dataset/DUTS/DUTS-TE/DUTS-TE-Image/'
                self.image_source = '/home/liuj/dataset/DUTS/DUTS-TE/test.lst'
                self.test_fold = '/media/ubuntu/disk/Result/saliency/DUTS/'
        elif test_mode == 2:

            self.image_root = '/home/liuj/dataset/SK-LARGE/images/test/'
            self.image_source = '/home/liuj/dataset/SK-LARGE/test.lst'

        with open(self.image_source, 'r') as f:
            self.image_list = [x.strip() for x in f.readlines()]

        self.image_num = len(self.image_list)

    def __getitem__(self, item):
        image, im_size = load_image_test(os.path.join(self.image_root, self.image_list[item]))
        image = torch.Tensor(image)

        return {'image': image, 'name': self.image_list[item%self.image_num], 'size': im_size}
    def save_folder(self):
        return self.test_fold

    def __len__(self):
        # return max(max(self.edge_num, self.skel_num), self.sal_num)
        return self.image_num


# get the dataloader (Note: without data augmentation, except saliency with random flip)
def get_loader(batch_size, mode='train', num_thread=1, test_mode=0, sal_mode='e'):
    shuffle = False
    if mode == 'train':
        shuffle = True
        dataset = ImageDataTrain()
    else:
        dataset = ImageDataTest(test_mode=test_mode, sal_mode=sal_mode)

    data_loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_thread)
    return data_loader, dataset

def load_image(pah):
    if not os.path.exists(pah):
        print('File Not Exists')
    im = cv2.imread(pah)
    in_ = np.array(im, dtype=np.float32)
    # in_ = cv2.resize(in_, im_sz, interpolation=cv2.INTER_CUBIC)
    # in_ = in_[:,:,::-1] # only if use PIL to load image
    in_ -= np.array((104.00699, 116.66877, 122.67892))
    in_ = in_.transpose((2,0,1))
    return in_

def load_image_test(pah):
    if not os.path.exists(pah):
        print('File Not Exists')
    im = cv2.imread(pah)
    in_ = np.array(im, dtype=np.float32)
    im_size = tuple(in_.shape[:2])
    # in_ = cv2.resize(in_, (cr_size[1], cr_size[0]), interpolation=cv2.INTER_LINEAR)
    # in_ = in_[:,:,::-1] # only if use PIL to load image
    in_ -= np.array((104.00699, 116.66877, 122.67892))
    in_ = in_.transpose((2,0,1))
    return in_, im_size

def load_edge_label(pah):
    """
    pixels > 0.5 -> 1
    Load label image as 1 x height x width integer array of label indices.
    The leading singleton dimension is required by the loss.
    """
    if not os.path.exists(pah):
        print('File Not Exists')
    im = Image.open(pah)
    label = np.array(im, dtype=np.float32)
    if len(label.shape) == 3:
        label = label[:,:,0]
    # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
    label = label / 255.
    label[np.where(label > 0.5)] = 1.
    label = label[np.newaxis, ...]
    return label

def load_skel_label(pah):
    """
    pixels > 0 -> 1
    Load label image as 1 x height x width integer array of label indices.
    The leading singleton dimension is required by the loss.
    """
    if not os.path.exists(pah):
        print('File Not Exists')
    im = Image.open(pah)
    label = np.array(im, dtype=np.float32)
    if len(label.shape) == 3:
        label = label[:,:,0]
    # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
    label = label / 255.
    label[np.where(label > 0.)] = 1.
    label = label[np.newaxis, ...]
    return label

def load_sal_label(pah):
    """
    Load label image as 1 x height x width integer array of label indices.
    The leading singleton dimension is required by the loss.
    """
    if not os.path.exists(pah):
        print('File Not Exists')
    im = Image.open(pah)
    label = np.array(im, dtype=np.float32)
    if len(label.shape) == 3:
        label = label[:,:,0]
    # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
    label = label / 255.
    label = label[np.newaxis, ...]
    return label

def load_sem_label(pah):
    """
    Load label image as 1 x height x width integer array of label indices.
    The leading singleton dimension is required by the loss.
    """
    if not os.path.exists(pah):
        print('File Not Exists')
    im = Image.open(pah)
    label = np.array(im, dtype=np.float32)
    if len(label.shape) == 3:
        label = label[:,:,0]
    # label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
    # label = label / 255.
    label = label[np.newaxis, ...]
    return label

def edge_thres_transform(x, thres):
    # y0 = torch.zeros(x.size())
    y1 = torch.ones(x.size())
    x = torch.where(x >= thres, y1, x)
    return x

def skel_thres_transform(x, thres):
    y0 = torch.zeros(x.size())
    y1 = torch.ones(x.size())
    x = torch.where(x > thres, y1, y0)
    return x

def cv_random_flip(img, label, edge):
    flip_flag = random.randint(0, 1)
    if flip_flag == 1:
        img = img[:,:,::-1].copy()
        label = label[:,:,::-1].copy()
        edge = edge[:,:,::-1].copy()
    return img, label, edge

def cv_random_crop_flip(img, label, resize_size, crop_size, random_flip=True):
    def get_params(img_size, output_size):
        h, w = img_size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw
    if random_flip:
        flip_flag = random.randint(0, 1)
    img = img.transpose((1,2,0)) # H, W, C
    label = label[0,:,:] # H, W
    img = cv2.resize(img, (resize_size[1], resize_size[0]), interpolation=cv2.INTER_LINEAR)
    label = cv2.resize(label, (resize_size[1], resize_size[0]), interpolation=cv2.INTER_NEAREST)
    i, j, h, w = get_params(resize_size, crop_size)
    img = img[i:i+h, j:j+w, :].transpose((2,0,1)) # C, H, W
    label = label[i:i+h, j:j+w][np.newaxis, ...] # 1, H, W
    if flip_flag == 1:
        img = img[:,:,::-1].copy()
        label = label[:,:,::-1].copy()
    return img, label

def random_crop(img, label, size, padding=None, pad_if_needed=True, fill_img=(123, 116, 103), fill_label=0, padding_mode='constant'):

    def get_params(img, output_size):
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    if padding is not None:
        img = F.pad(img, padding, fill_img, padding_mode)
        label = F.pad(label, padding, fill_label, padding_mode)

    # pad the width if needed
    if pad_if_needed and img.size[0] < size[1]:
        img = F.pad(img, (int((1 + size[1] - img.size[0]) / 2), 0), fill_img, padding_mode)
        label = F.pad(label, (int((1 + size[1] - label.size[0]) / 2), 0), fill_label, padding_mode)
    # pad the height if needed
    if pad_if_needed and img.size[1] < size[0]:
        img = F.pad(img, (0, int((1 + size[0] - img.size[1]) / 2)), fill_img, padding_mode)
        label = F.pad(label, (0, int((1 + size[0] - label.size[1]) / 2)), fill_label, padding_mode)

    i, j, h, w = get_params(img, size)
    return [F.crop(img, i, j, h, w), F.crop(label, i, j, h, w)]