File size: 8,611 Bytes
7f1f1cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
from torch import nn
from torch.nn import init
import torch.nn.functional as F
import math
from torch.autograd import Variable
import numpy as np

from resnet import resnet50
from vgg import vgg16


config_vgg = {'convert': [[128,256,512,512,512],[64,128,256,512,512]], 'merge1': [[128, 256, 128, 3,1], [256, 512, 256, 3, 1], [512, 0, 512, 5, 2], [512, 0, 512, 5, 2],[512, 0, 512, 7, 3]], 'merge2': [[128], [256, 512, 512, 512]]}  # no convert layer, no conv6

config_resnet = {'convert': [[64,256,512,1024,2048],[128,256,512,512,512]], 'deep_pool': [[512, 512, 256, 256, 128], [512, 256, 256, 128, 128], [False, True, True, True, False], [True, True, True, True, False]], 'score': 256, 'edgeinfo':[[16, 16, 16, 16], 128, [16,8,4,2]],'edgeinfoc':[64,128], 'block': [[512, [16]], [256, [16]], [256, [16]], [128, [16]]], 'fuse': [[16, 16, 16, 16], True], 'fuse_ratio': [[16,1], [8,1], [4,1], [2,1]],  'merge1': [[128, 256, 128, 3,1], [256, 512, 256, 3, 1], [512, 0, 512, 5, 2], [512, 0, 512, 5, 2],[512, 0, 512, 7, 3]], 'merge2': [[128], [256, 512, 512, 512]]}


class ConvertLayer(nn.Module):
    def __init__(self, list_k):
        super(ConvertLayer, self).__init__()
        up0, up1, up2 = [], [], []
        for i in range(len(list_k[0])):
          
            up0.append(nn.Sequential(nn.Conv2d(list_k[0][i], list_k[1][i], 1, 1, bias=False), nn.ReLU(inplace=True)))


        self.convert0 = nn.ModuleList(up0)


    def forward(self, list_x):
        resl = []
        for i in range(len(list_x)):
            resl.append(self.convert0[i](list_x[i]))
        return resl


        

class MergeLayer1(nn.Module): # list_k: [[64, 512, 64], [128, 512, 128], [256, 0, 256] ... ]
    def __init__(self, list_k):
        super(MergeLayer1, self).__init__()
        self.list_k = list_k
        trans, up, score = [], [], []
        for ik in list_k:
            if ik[1] > 0:
                trans.append(nn.Sequential(nn.Conv2d(ik[1], ik[0], 1, 1, bias=False), nn.ReLU(inplace=True)))

           
            up.append(nn.Sequential(nn.Conv2d(ik[0], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True), nn.Conv2d(ik[2], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True), nn.Conv2d(ik[2], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True)))
            score.append(nn.Conv2d(ik[2], 1, 3, 1, 1))
        trans.append(nn.Sequential(nn.Conv2d(512, 128, 1, 1, bias=False), nn.ReLU(inplace=True)))
        self.trans, self.up, self.score = nn.ModuleList(trans), nn.ModuleList(up), nn.ModuleList(score)
        self.relu =nn.ReLU()

    def forward(self, list_x, x_size):
        up_edge, up_sal, edge_feature, sal_feature = [], [], [], []
        
        
        num_f = len(list_x)
        tmp = self.up[num_f - 1](list_x[num_f-1])
        sal_feature.append(tmp)
        U_tmp = tmp
        up_sal.append(F.interpolate(self.score[num_f - 1](tmp), x_size, mode='bilinear', align_corners=True))
        
        for j in range(2, num_f ):
            i = num_f - j
             
            if list_x[i].size()[1] < U_tmp.size()[1]:
                U_tmp = list_x[i] + F.interpolate((self.trans[i](U_tmp)), list_x[i].size()[2:], mode='bilinear', align_corners=True)
            else:
                U_tmp = list_x[i] + F.interpolate((U_tmp), list_x[i].size()[2:], mode='bilinear', align_corners=True)
            
            
            
                
            
            tmp = self.up[i](U_tmp)
            U_tmp = tmp
            sal_feature.append(tmp)
            up_sal.append(F.interpolate(self.score[i](tmp), x_size, mode='bilinear', align_corners=True))

        U_tmp = list_x[0] + F.interpolate((self.trans[-1](sal_feature[0])), list_x[0].size()[2:], mode='bilinear', align_corners=True)
        tmp = self.up[0](U_tmp)
        edge_feature.append(tmp)
       
        up_edge.append(F.interpolate(self.score[0](tmp), x_size, mode='bilinear', align_corners=True)) 
        return up_edge, edge_feature, up_sal, sal_feature        
        
class MergeLayer2(nn.Module): 
    def __init__(self, list_k):
        super(MergeLayer2, self).__init__()
        self.list_k = list_k
        trans, up, score = [], [], []
        for i in list_k[0]:
            tmp = []
            tmp_up = []
            tmp_score = []
            feature_k = [[3,1],[5,2], [5,2], [7,3]]
            for idx, j in enumerate(list_k[1]):
                tmp.append(nn.Sequential(nn.Conv2d(j, i, 1, 1, bias=False), nn.ReLU(inplace=True)))

                tmp_up.append(nn.Sequential(nn.Conv2d(i , i, feature_k[idx][0], 1, feature_k[idx][1]), nn.ReLU(inplace=True), nn.Conv2d(i, i,  feature_k[idx][0],1 , feature_k[idx][1]), nn.ReLU(inplace=True), nn.Conv2d(i, i, feature_k[idx][0], 1, feature_k[idx][1]), nn.ReLU(inplace=True)))
                tmp_score.append(nn.Conv2d(i, 1, 3, 1, 1))
            trans.append(nn.ModuleList(tmp))

            up.append(nn.ModuleList(tmp_up))
            score.append(nn.ModuleList(tmp_score))
            

        self.trans, self.up, self.score = nn.ModuleList(trans), nn.ModuleList(up), nn.ModuleList(score)       
        self.final_score = nn.Sequential(nn.Conv2d(list_k[0][0], list_k[0][0], 5, 1, 2), nn.ReLU(inplace=True), nn.Conv2d(list_k[0][0], 1, 3, 1, 1))
        self.relu =nn.ReLU()

    def forward(self, list_x, list_y, x_size):
        up_score, tmp_feature = [], []
        list_y = list_y[::-1]

        
        for i, i_x in enumerate(list_x):
            for j, j_x in enumerate(list_y):                              
                tmp = F.interpolate(self.trans[i][j](j_x), i_x.size()[2:], mode='bilinear', align_corners=True) + i_x                
                tmp_f = self.up[i][j](tmp)             
                up_score.append(F.interpolate(self.score[i][j](tmp_f), x_size, mode='bilinear', align_corners=True))                  
                tmp_feature.append(tmp_f)
       
        tmp_fea = tmp_feature[0]
        for i_fea in range(len(tmp_feature) - 1):
            tmp_fea = self.relu(torch.add(tmp_fea, F.interpolate((tmp_feature[i_fea+1]), tmp_feature[0].size()[2:], mode='bilinear', align_corners=True)))
        up_score.append(F.interpolate(self.final_score(tmp_fea), x_size, mode='bilinear', align_corners=True))
      


        return up_score
       


# extra part
def extra_layer(base_model_cfg, vgg):
    if base_model_cfg == 'vgg':
        config = config_vgg
    elif base_model_cfg == 'resnet':
        config = config_resnet
    merge1_layers = MergeLayer1(config['merge1'])
    merge2_layers = MergeLayer2(config['merge2'])

    return vgg, merge1_layers, merge2_layers


# TUN network
class TUN_bone(nn.Module):
    def __init__(self, base_model_cfg, base, merge1_layers, merge2_layers):
        super(TUN_bone, self).__init__()
        self.base_model_cfg = base_model_cfg
        if self.base_model_cfg == 'vgg':

            self.base = base
            # self.base_ex = nn.ModuleList(base_ex)
            self.merge1 = merge1_layers
            self.merge2 = merge2_layers

        elif self.base_model_cfg == 'resnet':
            self.convert = ConvertLayer(config_resnet['convert'])
            self.base = base
            self.merge1 = merge1_layers
            self.merge2 = merge2_layers

    def forward(self, x):
        x_size = x.size()[2:]
        conv2merge = self.base(x)        
        if self.base_model_cfg == 'resnet':            
            conv2merge = self.convert(conv2merge)
        up_edge, edge_feature, up_sal, sal_feature = self.merge1(conv2merge, x_size)
        up_sal_final = self.merge2(edge_feature, sal_feature, x_size)
        return up_edge, up_sal, up_sal_final


# build the whole network
def build_model(base_model_cfg='vgg'):
    if base_model_cfg == 'vgg':
        return TUN_bone(base_model_cfg, *extra_layer(base_model_cfg, vgg16()))
    elif base_model_cfg == 'resnet':
        return TUN_bone(base_model_cfg, *extra_layer(base_model_cfg, resnet50()))


# weight init
def xavier(param):
    # init.xavier_uniform(param)
    init.xavier_uniform_(param)


def weights_init(m):
    if isinstance(m, nn.Conv2d):
        # xavier(m.weight.data)
        m.weight.data.normal_(0, 0.01)
        if m.bias is not None:
            m.bias.data.zero_()

if __name__ == '__main__':
    from torch.autograd import Variable
    net = TUN(*extra_layer(vgg(base['tun'], 3), vgg(base['tun_ex'], 512), config['merge_block'], config['fuse'])).cuda()
    img = Variable(torch.randn((1, 3, 256, 256))).cuda()
    out = net(img, mode = 2)
    print(len(out))
    print(len(out[0]))
    print(out[0].shape)
    print(len(out[1]))
    # print(net)
    input('Press Any to Continue...')