File size: 8,611 Bytes
7f1f1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import torch
from torch import nn
from torch.nn import init
import torch.nn.functional as F
import math
from torch.autograd import Variable
import numpy as np
from resnet import resnet50
from vgg import vgg16
config_vgg = {'convert': [[128,256,512,512,512],[64,128,256,512,512]], 'merge1': [[128, 256, 128, 3,1], [256, 512, 256, 3, 1], [512, 0, 512, 5, 2], [512, 0, 512, 5, 2],[512, 0, 512, 7, 3]], 'merge2': [[128], [256, 512, 512, 512]]} # no convert layer, no conv6
config_resnet = {'convert': [[64,256,512,1024,2048],[128,256,512,512,512]], 'deep_pool': [[512, 512, 256, 256, 128], [512, 256, 256, 128, 128], [False, True, True, True, False], [True, True, True, True, False]], 'score': 256, 'edgeinfo':[[16, 16, 16, 16], 128, [16,8,4,2]],'edgeinfoc':[64,128], 'block': [[512, [16]], [256, [16]], [256, [16]], [128, [16]]], 'fuse': [[16, 16, 16, 16], True], 'fuse_ratio': [[16,1], [8,1], [4,1], [2,1]], 'merge1': [[128, 256, 128, 3,1], [256, 512, 256, 3, 1], [512, 0, 512, 5, 2], [512, 0, 512, 5, 2],[512, 0, 512, 7, 3]], 'merge2': [[128], [256, 512, 512, 512]]}
class ConvertLayer(nn.Module):
def __init__(self, list_k):
super(ConvertLayer, self).__init__()
up0, up1, up2 = [], [], []
for i in range(len(list_k[0])):
up0.append(nn.Sequential(nn.Conv2d(list_k[0][i], list_k[1][i], 1, 1, bias=False), nn.ReLU(inplace=True)))
self.convert0 = nn.ModuleList(up0)
def forward(self, list_x):
resl = []
for i in range(len(list_x)):
resl.append(self.convert0[i](list_x[i]))
return resl
class MergeLayer1(nn.Module): # list_k: [[64, 512, 64], [128, 512, 128], [256, 0, 256] ... ]
def __init__(self, list_k):
super(MergeLayer1, self).__init__()
self.list_k = list_k
trans, up, score = [], [], []
for ik in list_k:
if ik[1] > 0:
trans.append(nn.Sequential(nn.Conv2d(ik[1], ik[0], 1, 1, bias=False), nn.ReLU(inplace=True)))
up.append(nn.Sequential(nn.Conv2d(ik[0], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True), nn.Conv2d(ik[2], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True), nn.Conv2d(ik[2], ik[2], ik[3], 1, ik[4]), nn.ReLU(inplace=True)))
score.append(nn.Conv2d(ik[2], 1, 3, 1, 1))
trans.append(nn.Sequential(nn.Conv2d(512, 128, 1, 1, bias=False), nn.ReLU(inplace=True)))
self.trans, self.up, self.score = nn.ModuleList(trans), nn.ModuleList(up), nn.ModuleList(score)
self.relu =nn.ReLU()
def forward(self, list_x, x_size):
up_edge, up_sal, edge_feature, sal_feature = [], [], [], []
num_f = len(list_x)
tmp = self.up[num_f - 1](list_x[num_f-1])
sal_feature.append(tmp)
U_tmp = tmp
up_sal.append(F.interpolate(self.score[num_f - 1](tmp), x_size, mode='bilinear', align_corners=True))
for j in range(2, num_f ):
i = num_f - j
if list_x[i].size()[1] < U_tmp.size()[1]:
U_tmp = list_x[i] + F.interpolate((self.trans[i](U_tmp)), list_x[i].size()[2:], mode='bilinear', align_corners=True)
else:
U_tmp = list_x[i] + F.interpolate((U_tmp), list_x[i].size()[2:], mode='bilinear', align_corners=True)
tmp = self.up[i](U_tmp)
U_tmp = tmp
sal_feature.append(tmp)
up_sal.append(F.interpolate(self.score[i](tmp), x_size, mode='bilinear', align_corners=True))
U_tmp = list_x[0] + F.interpolate((self.trans[-1](sal_feature[0])), list_x[0].size()[2:], mode='bilinear', align_corners=True)
tmp = self.up[0](U_tmp)
edge_feature.append(tmp)
up_edge.append(F.interpolate(self.score[0](tmp), x_size, mode='bilinear', align_corners=True))
return up_edge, edge_feature, up_sal, sal_feature
class MergeLayer2(nn.Module):
def __init__(self, list_k):
super(MergeLayer2, self).__init__()
self.list_k = list_k
trans, up, score = [], [], []
for i in list_k[0]:
tmp = []
tmp_up = []
tmp_score = []
feature_k = [[3,1],[5,2], [5,2], [7,3]]
for idx, j in enumerate(list_k[1]):
tmp.append(nn.Sequential(nn.Conv2d(j, i, 1, 1, bias=False), nn.ReLU(inplace=True)))
tmp_up.append(nn.Sequential(nn.Conv2d(i , i, feature_k[idx][0], 1, feature_k[idx][1]), nn.ReLU(inplace=True), nn.Conv2d(i, i, feature_k[idx][0],1 , feature_k[idx][1]), nn.ReLU(inplace=True), nn.Conv2d(i, i, feature_k[idx][0], 1, feature_k[idx][1]), nn.ReLU(inplace=True)))
tmp_score.append(nn.Conv2d(i, 1, 3, 1, 1))
trans.append(nn.ModuleList(tmp))
up.append(nn.ModuleList(tmp_up))
score.append(nn.ModuleList(tmp_score))
self.trans, self.up, self.score = nn.ModuleList(trans), nn.ModuleList(up), nn.ModuleList(score)
self.final_score = nn.Sequential(nn.Conv2d(list_k[0][0], list_k[0][0], 5, 1, 2), nn.ReLU(inplace=True), nn.Conv2d(list_k[0][0], 1, 3, 1, 1))
self.relu =nn.ReLU()
def forward(self, list_x, list_y, x_size):
up_score, tmp_feature = [], []
list_y = list_y[::-1]
for i, i_x in enumerate(list_x):
for j, j_x in enumerate(list_y):
tmp = F.interpolate(self.trans[i][j](j_x), i_x.size()[2:], mode='bilinear', align_corners=True) + i_x
tmp_f = self.up[i][j](tmp)
up_score.append(F.interpolate(self.score[i][j](tmp_f), x_size, mode='bilinear', align_corners=True))
tmp_feature.append(tmp_f)
tmp_fea = tmp_feature[0]
for i_fea in range(len(tmp_feature) - 1):
tmp_fea = self.relu(torch.add(tmp_fea, F.interpolate((tmp_feature[i_fea+1]), tmp_feature[0].size()[2:], mode='bilinear', align_corners=True)))
up_score.append(F.interpolate(self.final_score(tmp_fea), x_size, mode='bilinear', align_corners=True))
return up_score
# extra part
def extra_layer(base_model_cfg, vgg):
if base_model_cfg == 'vgg':
config = config_vgg
elif base_model_cfg == 'resnet':
config = config_resnet
merge1_layers = MergeLayer1(config['merge1'])
merge2_layers = MergeLayer2(config['merge2'])
return vgg, merge1_layers, merge2_layers
# TUN network
class TUN_bone(nn.Module):
def __init__(self, base_model_cfg, base, merge1_layers, merge2_layers):
super(TUN_bone, self).__init__()
self.base_model_cfg = base_model_cfg
if self.base_model_cfg == 'vgg':
self.base = base
# self.base_ex = nn.ModuleList(base_ex)
self.merge1 = merge1_layers
self.merge2 = merge2_layers
elif self.base_model_cfg == 'resnet':
self.convert = ConvertLayer(config_resnet['convert'])
self.base = base
self.merge1 = merge1_layers
self.merge2 = merge2_layers
def forward(self, x):
x_size = x.size()[2:]
conv2merge = self.base(x)
if self.base_model_cfg == 'resnet':
conv2merge = self.convert(conv2merge)
up_edge, edge_feature, up_sal, sal_feature = self.merge1(conv2merge, x_size)
up_sal_final = self.merge2(edge_feature, sal_feature, x_size)
return up_edge, up_sal, up_sal_final
# build the whole network
def build_model(base_model_cfg='vgg'):
if base_model_cfg == 'vgg':
return TUN_bone(base_model_cfg, *extra_layer(base_model_cfg, vgg16()))
elif base_model_cfg == 'resnet':
return TUN_bone(base_model_cfg, *extra_layer(base_model_cfg, resnet50()))
# weight init
def xavier(param):
# init.xavier_uniform(param)
init.xavier_uniform_(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
# xavier(m.weight.data)
m.weight.data.normal_(0, 0.01)
if m.bias is not None:
m.bias.data.zero_()
if __name__ == '__main__':
from torch.autograd import Variable
net = TUN(*extra_layer(vgg(base['tun'], 3), vgg(base['tun_ex'], 512), config['merge_block'], config['fuse'])).cuda()
img = Variable(torch.randn((1, 3, 256, 256))).cuda()
out = net(img, mode = 2)
print(len(out))
print(len(out[0]))
print(out[0].shape)
print(len(out[1]))
# print(net)
input('Press Any to Continue...')
|