|
import torch.nn as nn |
|
import math |
|
|
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
affine_par = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"3x3 convolution with padding" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes, affine = affine_par) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes, affine = affine_par) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes,affine = affine_par) |
|
for i in self.bn1.parameters(): |
|
i.requires_grad = False |
|
padding = 1 |
|
if dilation_ == 2: |
|
padding = 2 |
|
elif dilation_ == 4: |
|
padding = 4 |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, |
|
padding=padding, bias=False, dilation = dilation_) |
|
self.bn2 = nn.BatchNorm2d(planes,affine = affine_par) |
|
for i in self.bn2.parameters(): |
|
i.requires_grad = False |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par) |
|
for i in self.bn3.parameters(): |
|
i.requires_grad = False |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
|
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, block, layers): |
|
self.inplanes = 64 |
|
super(ResNet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(64,affine = affine_par) |
|
for i in self.bn1.parameters(): |
|
i.requires_grad = False |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
|
|
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 2) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, 0.01) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion,affine = affine_par), |
|
) |
|
for i in downsample._modules['1'].parameters(): |
|
i.requires_grad = False |
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride,dilation_=dilation__, downsample = downsample )) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes,dilation_=dilation__)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
|
|
|
|
def forward(self, x): |
|
tmp_x = [] |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
tmp_x.append(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
tmp_x.append(x) |
|
x = self.layer2(x) |
|
tmp_x.append(x) |
|
x = self.layer3(x) |
|
tmp_x.append(x) |
|
x = self.layer4(x) |
|
tmp_x.append(x) |
|
|
|
return tmp_x |
|
|
|
|
|
|
|
class ResNet_locate(nn.Module): |
|
def __init__(self, block, layers): |
|
super(ResNet_locate,self).__init__() |
|
self.resnet = ResNet(block, layers) |
|
self.in_planes = 512 |
|
self.out_planes = [512, 256, 256, 128] |
|
|
|
self.ppms_pre = nn.Conv2d(2048, self.in_planes, 1, 1, bias=False) |
|
ppms, infos = [], [] |
|
for ii in [1, 3, 5]: |
|
ppms.append(nn.Sequential(nn.AdaptiveAvgPool2d(ii), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True))) |
|
self.ppms = nn.ModuleList(ppms) |
|
|
|
self.ppm_cat = nn.Sequential(nn.Conv2d(self.in_planes * 4, self.in_planes, 3, 1, 1, bias=False), nn.ReLU(inplace=True)) |
|
|
|
for ii in self.out_planes: |
|
infos.append(nn.Sequential(nn.Conv2d(self.in_planes, ii, 3, 1, 1, bias=False), nn.ReLU(inplace=True))) |
|
self.infos = nn.ModuleList(infos) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, 0.01) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
def load_pretrained_model(self, model): |
|
self.resnet.load_state_dict(model) |
|
|
|
def forward(self, x): |
|
x_size = x.size()[2:] |
|
xs = self.resnet(x) |
|
|
|
xs_1 = self.ppms_pre(xs[-1]) |
|
xls = [xs_1] |
|
for k in range(len(self.ppms)): |
|
xls.append(F.interpolate(self.ppms[k](xs_1), xs_1.size()[2:], mode='bilinear', align_corners=True)) |
|
xls = self.ppm_cat(torch.cat(xls, dim=1)) |
|
top_score = None |
|
|
|
|
|
infos = [] |
|
for k in range(len(self.infos)): |
|
infos.append(self.infos[k](F.interpolate(xls, xs[len(self.infos) - 1 - k].size()[2:], mode='bilinear', align_corners=True))) |
|
|
|
return xs, top_score, infos |
|
|
|
class BottleneckEZ(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): |
|
super(BottleneckEZ, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
|
|
padding = 1 |
|
if dilation_ == 2: |
|
padding = 2 |
|
elif dilation_ == 4: |
|
padding = 4 |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, |
|
padding=padding, bias=False, dilation = dilation_) |
|
|
|
|
|
|
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
|
|
|
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
|
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
|
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
|
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
|
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
|
|
def resnet50(pretrained=False): |
|
"""Constructs a ResNet-50 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on Places |
|
""" |
|
|
|
model = ResNet(Bottleneck, [3, 4, 6, 3]) |
|
if pretrained: |
|
model.load_state_dict(load_url(model_urls['resnet50']), strict=False) |
|
return model |
|
|
|
def resnet101(pretrained=False): |
|
"""Constructs a ResNet-101 model. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
|
|
model = ResNet_locate(Bottleneck, [3, 4, 23, 3]) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) |
|
return model |
|
|