|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import torch |
|
import torch.fft as fft |
|
from diffusers.utils import is_torch_version |
|
from diffusers.models.unet_2d_condition import logger as logger2d |
|
from diffusers.models.unet_3d_condition import logger as logger3d |
|
|
|
|
|
def isinstance_str(x: object, cls_name: str): |
|
""" |
|
Checks whether x has any class *named* cls_name in its ancestry. |
|
Doesn't require access to the class's implementation. |
|
|
|
Useful for patching! |
|
""" |
|
|
|
for _cls in x.__class__.__mro__: |
|
if _cls.__name__ == cls_name: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def Fourier_filter(x_in, threshold, scale): |
|
""" |
|
Updated Fourier filter based on: |
|
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706 |
|
""" |
|
x = x_in |
|
B, C, H, W = x.shape |
|
|
|
|
|
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0: |
|
x = x.to(dtype=torch.float32) |
|
|
|
|
|
x_freq = fft.fftn(x, dim=(-2, -1)) |
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1)) |
|
|
|
B, C, H, W = x_freq.shape |
|
mask = torch.ones((B, C, H, W), device=x.device) |
|
|
|
crow, ccol = H // 2, W // 2 |
|
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale |
|
x_freq = x_freq * mask |
|
|
|
|
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) |
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real |
|
|
|
return x_filtered.to(dtype=x_in.dtype) |
|
|
|
|
|
def register_upblock2d(model): |
|
""" |
|
Register UpBlock2D for UNet2DCondition. |
|
""" |
|
|
|
def up_forward(self): |
|
def forward( |
|
hidden_states, |
|
res_hidden_states_tuple, |
|
temb=None, |
|
upsample_size=None |
|
): |
|
logger2d.debug(f"in upblock2d, hidden states shape: {hidden_states.shape}") |
|
|
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "UpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
|
|
|
|
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): |
|
""" |
|
Register UpBlock2D with FreeU for UNet2DCondition. |
|
""" |
|
|
|
def up_forward(self): |
|
def forward( |
|
hidden_states, |
|
res_hidden_states_tuple, |
|
temb=None, |
|
upsample_size=None |
|
): |
|
logger2d.debug(f"in free upblock2d, hidden states shape: {hidden_states.shape}") |
|
|
|
for resnet in self.resnets: |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
|
|
|
|
if hidden_states.shape[1] == 1280: |
|
hidden_mean = hidden_states.mean(1).unsqueeze(1) |
|
B = hidden_mean.shape[0] |
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) |
|
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1) |
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) |
|
if hidden_states.shape[1] == 640: |
|
hidden_mean = hidden_states.mean(1).unsqueeze(1) |
|
B = hidden_mean.shape[0] |
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) |
|
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1) |
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), hidden_states, temb |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "UpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
setattr(upsample_block, 'b1', b1) |
|
setattr(upsample_block, 'b2', b2) |
|
setattr(upsample_block, 's1', s1) |
|
setattr(upsample_block, 's2', s2) |
|
|
|
|
|
def register_crossattn_upblock2d(model): |
|
""" |
|
Register CrossAttn UpBlock2D for UNet2DCondition. |
|
""" |
|
|
|
def up_forward(self): |
|
def forward( |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
logger2d.debug(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}") |
|
|
|
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
|
|
|
|
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): |
|
""" |
|
Register CrossAttn UpBlock2D with FreeU for UNet2DCondition. |
|
""" |
|
|
|
def up_forward(self): |
|
def forward( |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
logger2d.debug(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}") |
|
|
|
|
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
|
|
|
|
|
|
if hidden_states.shape[1] == 1280: |
|
hidden_mean = hidden_states.mean(1).unsqueeze(1) |
|
B = hidden_mean.shape[0] |
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) |
|
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1) |
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) |
|
if hidden_states.shape[1] == 640: |
|
hidden_mean = hidden_states.mean(1).unsqueeze(1) |
|
B = hidden_mean.shape[0] |
|
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) |
|
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) |
|
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1) |
|
|
|
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(resnet), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
return forward |
|
|
|
for i, upsample_block in enumerate(model.unet.up_blocks): |
|
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): |
|
upsample_block.forward = up_forward(upsample_block) |
|
setattr(upsample_block, 'b1', b1) |
|
setattr(upsample_block, 'b2', b2) |
|
setattr(upsample_block, 's1', s1) |
|
setattr(upsample_block, 's2', s2) |
|
|
|
def apply_freeu(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0): |
|
register_free_upblock2d(pipe, b1, b2, s1, s2) |
|
register_free_crossattn_upblock2d(pipe, b1, b2, s1, s2) |