|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import torch.nn.functional as F |
|
|
|
def numpy2tensor(img): |
|
x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1. |
|
x0 = torch.stack([x0], dim=0) |
|
|
|
return x0.permute(0, 3, 1, 2) |
|
|
|
def pil2tensor(img): |
|
return numpy2tensor(np.array(img)) |
|
|
|
def tensor2numpy(img): |
|
image = (img / 2 + 0.5).clamp(0, 1) |
|
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
images = (image * 255).round().astype("uint8") |
|
return images |
|
|
|
def tensor2pil(img): |
|
return Image.fromarray(tensor2numpy(img)[0]) |
|
|
|
def cv2sod(img): |
|
in_ = np.array(img, dtype=np.float32) |
|
in_ -= np.array((104.00699, 116.66877, 122.67892)) |
|
in_ = in_.transpose((2,0,1)) |
|
image = torch.Tensor(in_) |
|
return F.interpolate(image.unsqueeze(0), scale_factor=0.5, mode='bilinear') |
|
|
|
def resize_image(input_image, resolution): |
|
H, W, C = input_image.shape |
|
H = float(H) |
|
W = float(W) |
|
k = float(resolution) / min(H, W) |
|
H *= k |
|
W *= k |
|
H = int(np.round(H / 64.0)) * 64 |
|
W = int(np.round(W / 64.0)) * 64 |
|
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) |
|
return img |
|
|
|
def visualize(img_arr, dpi): |
|
plt.figure(figsize=(10,10),dpi=dpi) |
|
plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)) |
|
plt.axis('off') |
|
plt.show() |
|
|
|
|
|
def calc_mean_std(feat, eps=1e-5, chunk=1): |
|
size = feat.size() |
|
assert (len(size) == 4) |
|
if chunk == 2: |
|
feat = torch.cat(feat.chunk(2), dim=3) |
|
N, C = size[:2] |
|
feat_var = feat.view(N//chunk, C, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(N, C, 1, 1) |
|
feat_mean = feat.view(N//chunk, C, -1).mean(dim=2).view(N//chunk, C, 1, 1) |
|
return feat_mean.repeat(chunk,1,1,1), feat_std.repeat(chunk,1,1,1) |
|
|
|
|
|
def adaptive_instance_normalization(content_feat, style_feat, chunk=1): |
|
assert (content_feat.size()[:2] == style_feat.size()[:2]) |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat, chunk) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
|
|
normalized_feat = (content_feat - content_mean.expand( |
|
size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
|
|
class Dilate(): |
|
def __init__(self, kernel_size=7, channels=1, device='cpu'): |
|
self.kernel_size=kernel_size |
|
self.channels = channels |
|
gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size) |
|
gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1) |
|
self.mean = (self.kernel_size - 1)//2 |
|
gaussian_kernel = gaussian_kernel.to(device) |
|
self.gaussian_filter = gaussian_kernel |
|
|
|
def __call__(self, x): |
|
x = F.pad(x, (self.mean,self.mean,self.mean,self.mean), "replicate") |
|
return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1) |
|
|
|
@torch.no_grad() |
|
def get_saliency(imgs, sod_model, dilate): |
|
imgs_sod = torch.cat([cv2sod(img) for img in imgs], dim=0).cuda() |
|
_, _, up_sal_f = sod_model(imgs_sod) |
|
saliency = 1-dilate(np.squeeze(torch.sigmoid(up_sal_f[-1])).unsqueeze(1)) |
|
del up_sal_f |
|
torch.cuda.empty_cache() |
|
return saliency |
|
|