import torch.nn as nn import math # import torch.utils.model_zoo as model_zoo import torch import numpy as np import torch.nn.functional as F affine_par = True # def outS(i): # i = int(i) # i = (i+1)/2 # i = int(np.ceil((i+1)/2.0)) # i = (i+1)/2 # return i def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, affine = affine_par) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, affine = affine_par) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.bn1 = nn.BatchNorm2d(planes,affine = affine_par) for i in self.bn1.parameters(): i.requires_grad = False padding = 1 if dilation_ == 2: padding = 2 elif dilation_ == 4: padding = 4 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=padding, bias=False, dilation = dilation_) self.bn2 = nn.BatchNorm2d(planes,affine = affine_par) for i in self.bn2.parameters(): i.requires_grad = False self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par) for i in self.bn3.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64,affine = affine_par) for i in self.bn1.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) # self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation__ = 2) # self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 4) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 2) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # for i in m.parameters(): # i.requires_grad = False def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion,affine = affine_par), ) for i in downsample._modules['1'].parameters(): i.requires_grad = False layers = [] layers.append(block(self.inplanes, planes, stride,dilation_=dilation__, downsample = downsample )) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes,dilation_=dilation__)) return nn.Sequential(*layers) # def _make_pred_layer(self,block, dilation_series, padding_series,NoLabels): # return block(dilation_series,padding_series,NoLabels) def forward(self, x): tmp_x = [] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) tmp_x.append(x) x = self.maxpool(x) x = self.layer1(x) tmp_x.append(x) x = self.layer2(x) tmp_x.append(x) x = self.layer3(x) tmp_x.append(x) x = self.layer4(x) tmp_x.append(x) return tmp_x class ResNet_locate(nn.Module): def __init__(self, block, layers): super(ResNet_locate,self).__init__() self.resnet = ResNet(block, layers) self.in_planes = 512 self.out_planes = [512, 256, 256, 128] self.ppms_pre = nn.Conv2d(2048, self.in_planes, 1, 1, bias=False) ppms, infos = [], [] for ii in [1, 3, 5]: ppms.append(nn.Sequential(nn.AdaptiveAvgPool2d(ii), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True))) self.ppms = nn.ModuleList(ppms) self.ppm_cat = nn.Sequential(nn.Conv2d(self.in_planes * 4, self.in_planes, 3, 1, 1, bias=False), nn.ReLU(inplace=True)) # self.ppm_score = nn.Conv2d(self.in_planes, 1, 1, 1) for ii in self.out_planes: infos.append(nn.Sequential(nn.Conv2d(self.in_planes, ii, 3, 1, 1, bias=False), nn.ReLU(inplace=True))) self.infos = nn.ModuleList(infos) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def load_pretrained_model(self, model): self.resnet.load_state_dict(model) def forward(self, x): x_size = x.size()[2:] xs = self.resnet(x) xs_1 = self.ppms_pre(xs[-1]) xls = [xs_1] for k in range(len(self.ppms)): xls.append(F.interpolate(self.ppms[k](xs_1), xs_1.size()[2:], mode='bilinear', align_corners=True)) xls = self.ppm_cat(torch.cat(xls, dim=1)) top_score = None # top_score = F.interpolate(self.ppm_score(xls), x_size, mode='bilinear', align_corners=True) infos = [] for k in range(len(self.infos)): infos.append(self.infos[k](F.interpolate(xls, xs[len(self.infos) - 1 - k].size()[2:], mode='bilinear', align_corners=True))) return xs, top_score, infos class BottleneckEZ(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): super(BottleneckEZ, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change # self.bn1 = nn.BatchNorm2d(planes,affine = affine_par) # for i in self.bn1.parameters(): # i.requires_grad = False padding = 1 if dilation_ == 2: padding = 2 elif dilation_ == 4: padding = 4 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=padding, bias=False, dilation = dilation_) # self.bn2 = nn.BatchNorm2d(planes,affine = affine_par) # for i in self.bn2.parameters(): # i.requires_grad = False self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) # self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par) # for i in self.bn3.parameters(): # i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) # out = self.bn1(out) out = self.relu(out) out = self.conv2(out) # out = self.bn2(out) out = self.relu(out) out = self.conv3(out) # out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def resnet50(pretrained=False): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on Places """ # model = ResNet(Bottleneck, [3, 4, 6, 3]) model = ResNet(Bottleneck, [3, 4, 6, 3]) if pretrained: model.load_state_dict(load_url(model_urls['resnet50']), strict=False) return model def resnet101(pretrained=False): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ # model = ResNet(Bottleneck, [3, 4, 23, 3]) model = ResNet_locate(Bottleneck, [3, 4, 23, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model