Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,16 @@
|
|
2 |
import torch
|
3 |
from peft import AutoPeftModelForCausalLM
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
5 |
|
6 |
model_id = "hikinegi/Llama-JAVA_tuned"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
8 |
model = AutoPeftModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype=torch.float16)
|
9 |
|
10 |
# Set the model to evaluation mode
|
11 |
-
model.eval()
|
12 |
|
13 |
def generate_pred(text):
|
14 |
# Disable gradient calculation
|
@@ -22,9 +25,6 @@ def generate_pred(text):
|
|
22 |
pad_token_id=tokenizer.eos_token_id)
|
23 |
return (tokenizer.decode(outputs[0], skip_special_tokens=False))
|
24 |
|
25 |
-
import gradio as gr
|
26 |
-
import random
|
27 |
-
import time
|
28 |
|
29 |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
30 |
gr.Markdown("""<h1><center>CodeGuru will answer all of your'e JAVA coding Question</center></h1> """)
|
|
|
2 |
import torch
|
3 |
from peft import AutoPeftModelForCausalLM
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import gradio as gr
|
6 |
+
import random
|
7 |
+
import time
|
8 |
|
9 |
model_id = "hikinegi/Llama-JAVA_tuned"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
model = AutoPeftModelForCausalLM.from_pretrained(model_id, device_map='auto', torch_dtype=torch.float16)
|
12 |
|
13 |
# Set the model to evaluation mode
|
14 |
+
#model.eval()
|
15 |
|
16 |
def generate_pred(text):
|
17 |
# Disable gradient calculation
|
|
|
25 |
pad_token_id=tokenizer.eos_token_id)
|
26 |
return (tokenizer.decode(outputs[0], skip_special_tokens=False))
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
30 |
gr.Markdown("""<h1><center>CodeGuru will answer all of your'e JAVA coding Question</center></h1> """)
|