Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import torch
|
2 |
from transformers import LlamaForCausalLM, LlamaTokenizer
|
|
|
|
|
3 |
|
4 |
# Hugging Face model_path
|
5 |
model_path = 'psmathur/orca_mini_3b'
|
@@ -10,7 +12,7 @@ model = LlamaForCausalLM.from_pretrained(
|
|
10 |
|
11 |
|
12 |
#generate text function
|
13 |
-
def
|
14 |
|
15 |
if input:
|
16 |
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
@@ -38,8 +40,6 @@ def predict(system, instruction, input=None):
|
|
38 |
string = tokenizer.decode(output, skip_special_tokens=True)
|
39 |
return f'[!] Response: {string}'
|
40 |
|
41 |
-
import gradio as gr
|
42 |
-
|
43 |
# Define input components
|
44 |
prompt_input = gr.inputs.Textbox(label="System")
|
45 |
instruction_input = gr.inputs.Textbox(label="Instruction")
|
@@ -49,7 +49,6 @@ context_input = gr.inputs.Textbox(label="Context")
|
|
49 |
output_text = gr.outputs.Textbox(label="Output")
|
50 |
|
51 |
# Create the interface
|
52 |
-
|
53 |
inputs=[prompt_input, instruction_input, context_input],
|
54 |
-
outputs=output_text,enable_queue=True)
|
55 |
-
iface.launch()
|
|
|
1 |
import torch
|
2 |
from transformers import LlamaForCausalLM, LlamaTokenizer
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
|
6 |
# Hugging Face model_path
|
7 |
model_path = 'psmathur/orca_mini_3b'
|
|
|
12 |
|
13 |
|
14 |
#generate text function
|
15 |
+
def generate_text(system, instruction, input=None):
|
16 |
|
17 |
if input:
|
18 |
prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
|
|
40 |
string = tokenizer.decode(output, skip_special_tokens=True)
|
41 |
return f'[!] Response: {string}'
|
42 |
|
|
|
|
|
43 |
# Define input components
|
44 |
prompt_input = gr.inputs.Textbox(label="System")
|
45 |
instruction_input = gr.inputs.Textbox(label="Instruction")
|
|
|
49 |
output_text = gr.outputs.Textbox(label="Output")
|
50 |
|
51 |
# Create the interface
|
52 |
+
gr.Interface(fn=generate_text,
|
53 |
inputs=[prompt_input, instruction_input, context_input],
|
54 |
+
outputs=output_text,enable_queue=True).launch(debug=True)
|
|