File size: 42,757 Bytes
e73da9c
7c56def
 
 
 
e73da9c
7c56def
e73da9c
7c56def
e73da9c
 
 
7c56def
 
 
 
e73da9c
 
 
 
7c56def
e73da9c
7c56def
e73da9c
 
 
7c56def
e73da9c
 
7c56def
e73da9c
 
7c56def
 
 
 
 
 
 
e73da9c
 
7c56def
e73da9c
 
7c56def
e73da9c
 
7c56def
 
e73da9c
 
7c56def
e73da9c
 
7c56def
e73da9c
 
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c56def
e73da9c
 
 
 
 
 
7c56def
 
e73da9c
 
7c56def
 
e73da9c
7c56def
 
e73da9c
7c56def
e73da9c
 
7c56def
e73da9c
 
 
 
 
 
 
 
 
 
 
7c56def
e73da9c
 
 
 
 
 
7c56def
e73da9c
 
7c56def
e73da9c
 
 
 
 
 
 
7c56def
 
 
e73da9c
 
 
 
 
 
 
 
7c56def
 
 
 
 
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c56def
e73da9c
 
 
 
 
 
 
7c56def
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c56def
 
 
 
 
 
 
2730132
7c56def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e73da9c
 
7c56def
 
 
 
 
 
e73da9c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
import torch
from diffusers import DDIMScheduler, CosineDPMSolverMultistepScheduler
from diffusers.schedulers.scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
from diffusers import AudioLDM2Pipeline, StableAudioPipeline
from transformers import RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
from diffusers.models.embeddings import get_1d_rotary_pos_embed
from typing import Any, Dict, List, Optional, Tuple, Union
import gradio as gr


class PipelineWrapper(torch.nn.Module):
    def __init__(self, model_id: str,
                 device: torch.device,
                 double_precision: bool = False,
                 token: Optional[str] = None, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model_id = model_id
        self.device = device
        self.double_precision = double_precision
        self.token = token

    def get_sigma(self, timestep: int) -> float:
        sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.model.scheduler.alphas_cumprod - 1)
        return sqrt_recipm1_alphas_cumprod[timestep]

    def load_scheduler(self) -> None:
        pass

    def get_fn_STFT(self) -> torch.nn.Module:
        pass

    def get_sr(self) -> int:
        return 16000

    def vae_encode(self, x: torch.Tensor) -> torch.Tensor:
        pass

    def vae_decode(self, x: torch.Tensor) -> torch.Tensor:
        pass

    def decode_to_mel(self, x: torch.Tensor) -> torch.Tensor:
        pass

    def setup_extra_inputs(self, *args, **kwargs) -> None:
        pass

    def encode_text(self, prompts: List[str], **kwargs
                    ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
        pass

    def get_variance(self, timestep: torch.Tensor, prev_timestep: torch.Tensor) -> torch.Tensor:
        pass

    def get_alpha_prod_t_prev(self, prev_timestep: torch.Tensor) -> torch.Tensor:
        pass

    def get_noise_shape(self, x0: torch.Tensor, num_steps: int) -> Tuple[int, ...]:
        variance_noise_shape = (num_steps,
                                self.model.unet.config.in_channels,
                                x0.shape[-2],
                                x0.shape[-1])
        return variance_noise_shape

    def sample_xts_from_x0(self, x0: torch.Tensor, num_inference_steps: int = 50) -> torch.Tensor:
        """
        Samples from P(x_1:T|x_0)
        """
        alpha_bar = self.model.scheduler.alphas_cumprod
        sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5

        variance_noise_shape = self.get_noise_shape(x0, num_inference_steps + 1)
        timesteps = self.model.scheduler.timesteps.to(self.device)
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(variance_noise_shape).to(x0.device)
        xts[0] = x0
        for t in reversed(timesteps):
            idx = num_inference_steps - t_to_idx[int(t)]
            xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]

        return xts

    def get_zs_from_xts(self, xt: torch.Tensor, xtm1: torch.Tensor, noise_pred: torch.Tensor,
                        t: torch.Tensor, eta: float = 0, numerical_fix: bool = True, **kwargs
                        ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        # pred of x0
        alpha_bar = self.model.scheduler.alphas_cumprod
        if self.model.scheduler.config.prediction_type == 'epsilon':
            pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
        elif self.model.scheduler.config.prediction_type == 'v_prediction':
            pred_original_sample = (alpha_bar[t] ** 0.5) * xt - ((1 - alpha_bar[t]) ** 0.5) * noise_pred

        # direction to xt
        prev_timestep = t - self.model.scheduler.config.num_train_timesteps // \
            self.model.scheduler.num_inference_steps

        alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
        variance = self.get_variance(t, prev_timestep)

        if self.model.scheduler.config.prediction_type == 'epsilon':
            radom_noise_pred = noise_pred
        elif self.model.scheduler.config.prediction_type == 'v_prediction':
            radom_noise_pred = (alpha_bar[t] ** 0.5) * noise_pred + ((1 - alpha_bar[t]) ** 0.5) * xt

        pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * radom_noise_pred

        mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        z = (xtm1 - mu_xt) / (eta * variance ** 0.5)

        # correction to avoid error accumulation
        if numerical_fix:
            xtm1 = mu_xt + (eta * variance ** 0.5)*z

        return z, xtm1, None

    def reverse_step_with_custom_noise(self, model_output: torch.Tensor, timestep: torch.Tensor, sample: torch.Tensor,
                                       variance_noise: Optional[torch.Tensor] = None, eta: float = 0, **kwargs
                                       ) -> torch.Tensor:
        # 1. get previous step value (=t-1)
        prev_timestep = timestep - self.model.scheduler.config.num_train_timesteps // \
            self.model.scheduler.num_inference_steps
        # 2. compute alphas, betas
        alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
        beta_prod_t = 1 - alpha_prod_t
        # 3. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if self.model.scheduler.config.prediction_type == 'epsilon':
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        elif self.model.scheduler.config.prediction_type == 'v_prediction':
            pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        # variance = self.scheduler._get_variance(timestep, prev_timestep)
        variance = self.get_variance(timestep, prev_timestep)
        # std_dev_t = eta * variance ** (0.5)
        # Take care of asymetric reverse process (asyrp)
        if self.model.scheduler.config.prediction_type == 'epsilon':
            model_output_direction = model_output
        elif self.model.scheduler.config.prediction_type == 'v_prediction':
            model_output_direction = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
        pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
        # 8. Add noice if eta > 0
        if eta > 0:
            if variance_noise is None:
                variance_noise = torch.randn(model_output.shape, device=self.device)
            sigma_z = eta * variance ** (0.5) * variance_noise
            prev_sample = prev_sample + sigma_z

        return prev_sample

    def unet_forward(self,
                     sample: torch.FloatTensor,
                     timestep: Union[torch.Tensor, float, int],
                     encoder_hidden_states: torch.Tensor,
                     class_labels: Optional[torch.Tensor] = None,
                     timestep_cond: Optional[torch.Tensor] = None,
                     attention_mask: Optional[torch.Tensor] = None,
                     cross_attention_kwargs: Optional[Dict[str, Any]] = None,
                     added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
                     down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
                     mid_block_additional_residual: Optional[torch.Tensor] = None,
                     encoder_attention_mask: Optional[torch.Tensor] = None,
                     replace_h_space: Optional[torch.Tensor] = None,
                     replace_skip_conns: Optional[Dict[int, torch.Tensor]] = None,
                     return_dict: bool = True,
                     zero_out_resconns: Optional[Union[int, List]] = None) -> Tuple:
        pass


class AudioLDM2Wrapper(PipelineWrapper):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        if self.double_precision:
            self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, torch_dtype=torch.float64, token=self.token
                                                           ).to(self.device)
        else:
            try:
                self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=True, token=self.token
                                                               ).to(self.device)
            except FileNotFoundError:
                self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=False, token=self.token
                                                               ).to(self.device)

    def load_scheduler(self) -> None:
        self.model.scheduler = DDIMScheduler.from_pretrained(self.model_id, subfolder="scheduler")

    def get_fn_STFT(self) -> torch.nn.Module:
        from audioldm.audio import TacotronSTFT
        return TacotronSTFT(
            filter_length=1024,
            hop_length=160,
            win_length=1024,
            n_mel_channels=64,
            sampling_rate=16000,
            mel_fmin=0,
            mel_fmax=8000,
        )

    def vae_encode(self, x: torch.Tensor) -> torch.Tensor:
        # self.model.vae.disable_tiling()
        if x.shape[2] % 4:
            x = torch.nn.functional.pad(x, (0, 0, 4 - (x.shape[2] % 4), 0))
        return (self.model.vae.encode(x).latent_dist.mode() * self.model.vae.config.scaling_factor).float()
        # return (self.encode_no_tiling(x).latent_dist.mode() * self.model.vae.config.scaling_factor).float()

    def vae_decode(self, x: torch.Tensor) -> torch.Tensor:
        return self.model.vae.decode(1 / self.model.vae.config.scaling_factor * x).sample

    def decode_to_mel(self, x: torch.Tensor) -> torch.Tensor:
        if self.double_precision:
            tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().double()).detach()
        tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().float()).detach()
        if len(tmp.shape) == 1:
            tmp = tmp.unsqueeze(0)
        return tmp

    def encode_text(self, prompts: List[str], negative: bool = False, 
                    save_compute: bool = False, cond_length: int = 0, **kwargs
                    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        tokenizers = [self.model.tokenizer, self.model.tokenizer_2]
        text_encoders = [self.model.text_encoder, self.model.text_encoder_2]
        prompt_embeds_list = []
        attention_mask_list = []

        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompts,
                padding="max_length" if (save_compute and negative) or isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
                else True,
                max_length=tokenizer.model_max_length
                if (not save_compute) or ((not negative) or isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast, VitsTokenizer)))
                else cond_length,
                truncation=True,
                return_tensors="pt",
            )

            text_input_ids = text_inputs.input_ids
            attention_mask = text_inputs.attention_mask
            untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] \
                    and not torch.equal(text_input_ids, untruncated_ids):
                removed_text = tokenizer.batch_decode(
                    untruncated_ids[:, tokenizer.model_max_length - 1: -1])
                print(f"The following part of your input was truncated because {text_encoder.config.model_type} can "
                      f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
                      )

            text_input_ids = text_input_ids.to(self.device)
            attention_mask = attention_mask.to(self.device)

            with torch.no_grad():
                if text_encoder.config.model_type == "clap":
                    prompt_embeds = text_encoder.get_text_features(
                        text_input_ids,
                        attention_mask=attention_mask,
                    )
                    # append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
                    prompt_embeds = prompt_embeds[:, None, :]
                    # make sure that we attend to this single hidden-state
                    attention_mask = attention_mask.new_ones((len(prompts), 1))
                else:
                    prompt_embeds = text_encoder(
                        text_input_ids,
                        attention_mask=attention_mask,
                    )
                    prompt_embeds = prompt_embeds[0]

            prompt_embeds_list.append(prompt_embeds)
            attention_mask_list.append(attention_mask)

        # print(f'prompt[0].shape: {prompt_embeds_list[0].shape}')
        # print(f'prompt[1].shape: {prompt_embeds_list[1].shape}')
        # print(f'attn[0].shape: {attention_mask_list[0].shape}')
        # print(f'attn[1].shape: {attention_mask_list[1].shape}')

        projection_output = self.model.projection_model(
            hidden_states=prompt_embeds_list[0],
            hidden_states_1=prompt_embeds_list[1],
            attention_mask=attention_mask_list[0],
            attention_mask_1=attention_mask_list[1],
        )
        projected_prompt_embeds = projection_output.hidden_states
        projected_attention_mask = projection_output.attention_mask

        generated_prompt_embeds = self.model.generate_language_model(
            projected_prompt_embeds,
            attention_mask=projected_attention_mask,
            max_new_tokens=None,
        )

        prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder_2.dtype, device=self.device)
        attention_mask = (
            attention_mask.to(device=self.device)
            if attention_mask is not None
            else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=self.device)
        )
        generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.model.language_model.dtype, device=self.device)

        return generated_prompt_embeds, prompt_embeds, attention_mask

    def get_variance(self, timestep: torch.Tensor, prev_timestep: torch.Tensor) -> torch.Tensor:
        alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
        return variance

    def get_alpha_prod_t_prev(self, prev_timestep: torch.Tensor) -> torch.Tensor:
        return self.model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
            else self.model.scheduler.final_alpha_cumprod

    def unet_forward(self,
                     sample: torch.FloatTensor,
                     timestep: Union[torch.Tensor, float, int],
                     encoder_hidden_states: torch.Tensor,
                     timestep_cond: Optional[torch.Tensor] = None,
                     class_labels: Optional[torch.Tensor] = None,
                     attention_mask: Optional[torch.Tensor] = None,
                     encoder_attention_mask: Optional[torch.Tensor] = None,
                     return_dict: bool = True,
                     cross_attention_kwargs: Optional[Dict[str, Any]] = None,
                     mid_block_additional_residual: Optional[torch.Tensor] = None,
                     replace_h_space: Optional[torch.Tensor] = None,
                     replace_skip_conns: Optional[Dict[int, torch.Tensor]] = None,
                     zero_out_resconns: Optional[Union[int, List]] = None) -> Tuple:

        # Translation
        encoder_hidden_states_1 = class_labels
        class_labels = None
        encoder_attention_mask_1 = encoder_attention_mask
        encoder_attention_mask = None

        # return self.model.unet(sample, timestep,
        #                        encoder_hidden_states=generated_prompt_embeds,
        #                        encoder_hidden_states_1=encoder_hidden_states_1,
        #                        encoder_attention_mask_1=encoder_attention_mask_1,
        #                        ), None, None

        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2 ** self.model.unet.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            # print("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        if encoder_attention_mask_1 is not None:
            encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0
            encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.model.unet.time_proj(timesteps)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.model.unet.time_embedding(t_emb, timestep_cond)
        aug_emb = None

        if self.model.unet.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.model.unet.config.class_embed_type == "timestep":
                class_labels = self.model.unet.time_proj(class_labels)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

            class_emb = self.model.unet.class_embedding(class_labels).to(dtype=sample.dtype)

            if self.model.unet.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb

        emb = emb + aug_emb if aug_emb is not None else emb

        if self.model.unet.time_embed_act is not None:
            emb = self.model.unet.time_embed_act(emb)

        # 2. pre-process
        sample = self.model.unet.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.model.unet.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    encoder_hidden_states_1=encoder_hidden_states_1,
                    encoder_attention_mask_1=encoder_attention_mask_1,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        if self.model.unet.mid_block is not None:
            sample = self.model.unet.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
                encoder_attention_mask=encoder_attention_mask,
                encoder_hidden_states_1=encoder_hidden_states_1,
                encoder_attention_mask_1=encoder_attention_mask_1,
            )

        if replace_h_space is None:
            h_space = sample.clone()
        else:
            h_space = replace_h_space
            sample = replace_h_space.clone()

        if mid_block_additional_residual is not None:
            sample = sample + mid_block_additional_residual

        extracted_res_conns = {}
        # 5. up
        for i, upsample_block in enumerate(self.model.unet.up_blocks):
            is_final_block = i == len(self.model.unet.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets):]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
            if replace_skip_conns is not None and replace_skip_conns.get(i):
                res_samples = replace_skip_conns.get(i)

            if zero_out_resconns is not None:
                if (type(zero_out_resconns) is int and i >= (zero_out_resconns - 1)) or \
                        type(zero_out_resconns) is list and i in zero_out_resconns:
                    res_samples = [torch.zeros_like(x) for x in res_samples]
                # down_block_res_samples = [torch.zeros_like(x) for x in down_block_res_samples]

            extracted_res_conns[i] = res_samples

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    encoder_hidden_states_1=encoder_hidden_states_1,
                    encoder_attention_mask_1=encoder_attention_mask_1,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )

        # 6. post-process
        if self.model.unet.conv_norm_out:
            sample = self.model.unet.conv_norm_out(sample)
            sample = self.model.unet.conv_act(sample)
        sample = self.model.unet.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample), h_space, extracted_res_conns


class StableAudWrapper(PipelineWrapper):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        try:
            self.model = StableAudioPipeline.from_pretrained(self.model_id, token=self.token, local_files_only=True
                                                             ).to(self.device)
        except (FileNotFoundError, OSError):
            self.model = StableAudioPipeline.from_pretrained(self.model_id, token=self.token, local_files_only=False
                                                             ).to(self.device)
        self.model.transformer.eval()
        self.model.vae.eval()

        if self.double_precision:
            self.model = self.model.to(torch.float64)

    def load_scheduler(self) -> None:
        self.model.scheduler = CosineDPMSolverMultistepScheduler.from_pretrained(
            self.model_id, subfolder="scheduler", token=self.token)

    def encode_text(self, prompts: List[str], negative: bool = False, **kwargs) -> Tuple[torch.Tensor, None, torch.Tensor]:
        text_inputs = self.model.tokenizer(
            prompts,
            padding="max_length",
            max_length=self.model.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids.to(self.device)
        attention_mask = text_inputs.attention_mask.to(self.device)

        self.model.text_encoder.eval()
        with torch.no_grad():
            prompt_embeds = self.model.text_encoder(text_input_ids, attention_mask=attention_mask)[0]

        if negative and attention_mask is not None:  # set the masked tokens to the null embed
            prompt_embeds = torch.where(attention_mask.to(torch.bool).unsqueeze(2), prompt_embeds, 0.0)

        prompt_embeds = self.model.projection_model(text_hidden_states=prompt_embeds).text_hidden_states

        if attention_mask is None:
            raise gr.Error("Shouldn't reach here. Please raise an issue if you do.")
            """prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            if attention_mask is not None and negative_attention_mask is None:
                negative_attention_mask = torch.ones_like(attention_mask)
            elif attention_mask is None and negative_attention_mask is not None:
                attention_mask = torch.ones_like(negative_attention_mask)"""

        if prompts == [""]:  # empty
            return torch.zeros_like(prompt_embeds, device=prompt_embeds.device), None, None

        prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
        prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
        return prompt_embeds, None, attention_mask

    def get_fn_STFT(self) -> torch.nn.Module:
        from audioldm.audio import TacotronSTFT
        return TacotronSTFT(
            filter_length=1024,
            hop_length=160,
            win_length=1024,
            n_mel_channels=64,
            sampling_rate=44100,
            mel_fmin=0,
            mel_fmax=22050,
        )

    def vae_encode(self, x: torch.Tensor) -> torch.Tensor:
        x = x.unsqueeze(0)

        audio_vae_length = int(self.model.transformer.config.sample_size * self.model.vae.hop_length)
        audio_shape = (1, self.model.vae.config.audio_channels, audio_vae_length)

        # check num_channels
        if x.shape[1] == 1 and self.model.vae.config.audio_channels == 2:
            x = x.repeat(1, 2, 1)

        audio_length = x.shape[-1]
        audio = x.new_zeros(audio_shape)
        audio[:, :, : min(audio_length, audio_vae_length)] = x[:, :, :audio_vae_length]

        encoded_audio = self.model.vae.encode(audio.to(self.device)).latent_dist
        encoded_audio = encoded_audio.sample()
        return encoded_audio

    def vae_decode(self, x: torch.Tensor) -> torch.Tensor:
        torch.cuda.empty_cache()
        # return self.model.vae.decode(1 / self.model.vae.config.scaling_factor * x).sample
        aud = self.model.vae.decode(x).sample
        return aud[:, :, self.waveform_start:self.waveform_end]

    def setup_extra_inputs(self, x: torch.Tensor, init_timestep: torch.Tensor,
                           extra_info: Optional[Any] = None,
                           audio_start_in_s: float = 0, audio_end_in_s: Optional[float] = None,
                           save_compute: bool = False) -> None:
        max_audio_length_in_s = self.model.transformer.config.sample_size * self.model.vae.hop_length / \
            self.model.vae.config.sampling_rate
        if audio_end_in_s is None:
            audio_end_in_s = max_audio_length_in_s

        if audio_end_in_s - audio_start_in_s > max_audio_length_in_s:
            raise ValueError(
                f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer "
                f"than the model maximum possible length ({max_audio_length_in_s}). "
                f"Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'."
            )

        self.waveform_start = int(audio_start_in_s * self.model.vae.config.sampling_rate)
        self.waveform_end = int(audio_end_in_s * self.model.vae.config.sampling_rate)

        self.seconds_start_hidden_states, self.seconds_end_hidden_states = self.model.encode_duration(
            audio_start_in_s, audio_end_in_s, self.device, False, 1)

        if save_compute:
            self.seconds_start_hidden_states = torch.cat([self.seconds_start_hidden_states, self.seconds_start_hidden_states], dim=0)
            self.seconds_end_hidden_states = torch.cat([self.seconds_end_hidden_states, self.seconds_end_hidden_states], dim=0)

        self.audio_duration_embeds = torch.cat([self.seconds_start_hidden_states,
                                                self.seconds_end_hidden_states], dim=2)

        # 7. Prepare rotary positional embedding
        self.rotary_embedding = get_1d_rotary_pos_embed(
            self.model.rotary_embed_dim,
            x.shape[2] + self.audio_duration_embeds.shape[1],
            use_real=True,
            repeat_interleave_real=False,
        )

        self.model.scheduler._init_step_index(init_timestep)

        # fix lower_order_nums for the reverse step - Option 1: only start from first order
        # self.model.scheduler.lower_order_nums = 0
        # self.model.scheduler.model_outputs = [None] * self.model.scheduler.config.solver_order
        # fix lower_order_nums for the reverse step - Option 2: start from the correct order with history
        t_to_idx = {float(v): k for k, v in enumerate(self.model.scheduler.timesteps)}
        idx = len(self.model.scheduler.timesteps) - t_to_idx[float(init_timestep)] - 1
        self.model.scheduler.model_outputs = [None, extra_info[idx] if extra_info is not None else None]
        self.model.scheduler.lower_order_nums = min(self.model.scheduler.step_index,
                                                    self.model.scheduler.config.solver_order)

        # if rand check:
        #     x *= self.model.scheduler.init_noise_sigma
        # return x

    def sample_xts_from_x0(self, x0: torch.Tensor, num_inference_steps: int = 50) -> torch.Tensor:
        """
        Samples from P(x_1:T|x_0)
        """

        sigmas = self.model.scheduler.sigmas
        shapes = self.get_noise_shape(x0, num_inference_steps + 1)
        xts = torch.zeros(shapes).to(x0.device)
        xts[0] = x0

        timesteps = self.model.scheduler.timesteps.to(self.device)
        t_to_idx = {float(v): k for k, v in enumerate(timesteps)}
        for t in reversed(timesteps):
            # idx = t_to_idx[int(t)]
            idx = num_inference_steps - t_to_idx[float(t)]
            n = torch.randn_like(x0)
            xts[idx] = x0 + n * sigmas[t_to_idx[float(t)]]
        return xts

    def get_zs_from_xts(self, xt: torch.Tensor, xtm1: torch.Tensor, data_pred: torch.Tensor,
                        t: torch.Tensor, numerical_fix: bool = True, first_order: bool = False, **kwargs
                        ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        # pred of x0
        sigmas = self.model.scheduler.sigmas
        timesteps = self.model.scheduler.timesteps
        solver_order = self.model.scheduler.config.solver_order

        if self.model.scheduler.step_index is None:
            self.model.scheduler._init_step_index(t)
        curr_step_index = self.model.scheduler.step_index

        # Improve numerical stability for small number of steps
        lower_order_final = (curr_step_index == len(timesteps) - 1) and (
            self.model.scheduler.config.euler_at_final
            or (self.model.scheduler.config.lower_order_final and len(timesteps) < 15)
            or self.model.scheduler.config.final_sigmas_type == "zero")
        lower_order_second = ((curr_step_index == len(timesteps) - 2) and
                              self.model.scheduler.config.lower_order_final and len(timesteps) < 15)

        data_pred = self.model.scheduler.convert_model_output(data_pred, sample=xt)
        for i in range(solver_order - 1):
            self.model.scheduler.model_outputs[i] = self.model.scheduler.model_outputs[i + 1]
        self.model.scheduler.model_outputs[-1] = data_pred

        # instead of brownian noise, here we calculate the noise ourselves
        if (curr_step_index == len(timesteps) - 1) and self.model.scheduler.config.final_sigmas_type == "zero":
            z = torch.zeros_like(xt)
        elif first_order or solver_order == 1 or self.model.scheduler.lower_order_nums < 1 or lower_order_final:
            sigma_t, sigma_s = sigmas[curr_step_index + 1], sigmas[curr_step_index]
            h = torch.log(sigma_s) - torch.log(sigma_t)
            z = (xtm1 - (sigma_t / sigma_s * torch.exp(-h)) * xt - (1 - torch.exp(-2.0 * h)) * data_pred) \
                / (sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)))
        elif solver_order == 2 or self.model.scheduler.lower_order_nums < 2 or lower_order_second:
            sigma_t = sigmas[curr_step_index + 1]
            sigma_s0 = sigmas[curr_step_index]
            sigma_s1 = sigmas[curr_step_index - 1]
            m0, m1 = self.model.scheduler.model_outputs[-1], self.model.scheduler.model_outputs[-2]
            h, h_0 = torch.log(sigma_s0) - torch.log(sigma_t), torch.log(sigma_s1) - torch.log(sigma_s0)
            r0 = h_0 / h
            D0, D1 = m0, (1.0 / r0) * (m0 - m1)

            # sde-dpmsolver++
            z = (xtm1 - (sigma_t / sigma_s0 * torch.exp(-h)) * xt
                 - (1 - torch.exp(-2.0 * h)) * D0
                 - 0.5 * (1 - torch.exp(-2.0 * h)) * D1) \
                / (sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)))

        # correction to avoid error accumulation
        if numerical_fix:
            if first_order or solver_order == 1 or self.model.scheduler.lower_order_nums < 1 or lower_order_final:
                xtm1 = self.model.scheduler.dpm_solver_first_order_update(data_pred, sample=xt, noise=z)
            elif solver_order == 2 or self.model.scheduler.lower_order_nums < 2 or lower_order_second:
                xtm1 = self.model.scheduler.multistep_dpm_solver_second_order_update(
                    self.model.scheduler.model_outputs, sample=xt, noise=z)
            # If not perfect recon - maybe TODO fix self.model.scheduler.model_outputs as well?

        if self.model.scheduler.lower_order_nums < solver_order:
            self.model.scheduler.lower_order_nums += 1
        # upon completion increase step index by one
        self.model.scheduler._step_index += 1

        return z, xtm1, self.model.scheduler.model_outputs[-2]

    def get_sr(self) -> int:
        return self.model.vae.config.sampling_rate

    def get_noise_shape(self, x0: torch.Tensor, num_steps: int) -> Tuple[int, int, int]:
        variance_noise_shape = (num_steps,
                                self.model.transformer.config.in_channels,
                                int(self.model.transformer.config.sample_size))
        return variance_noise_shape

    def reverse_step_with_custom_noise(self, model_output: torch.Tensor, timestep: torch.Tensor, sample: torch.Tensor,
                                       variance_noise: Optional[torch.Tensor] = None,
                                       first_order: bool = False, **kwargs
                                       ) -> torch.Tensor:
        if self.model.scheduler.step_index is None:
            self.model.scheduler._init_step_index(timestep)

        # Improve numerical stability for small number of steps
        lower_order_final = (self.model.scheduler.step_index == len(self.model.scheduler.timesteps) - 1) and (
            self.model.scheduler.config.euler_at_final
            or (self.model.scheduler.config.lower_order_final and len(self.model.scheduler.timesteps) < 15)
            or self.model.scheduler.config.final_sigmas_type == "zero"
        )
        lower_order_second = (
            (self.model.scheduler.step_index == len(self.model.scheduler.timesteps) - 2) and
            self.model.scheduler.config.lower_order_final and len(self.model.scheduler.timesteps) < 15
        )

        model_output = self.model.scheduler.convert_model_output(model_output, sample=sample)
        for i in range(self.model.scheduler.config.solver_order - 1):
            self.model.scheduler.model_outputs[i] = self.model.scheduler.model_outputs[i + 1]
        self.model.scheduler.model_outputs[-1] = model_output

        if variance_noise is None:
            if self.model.scheduler.noise_sampler is None:
                self.model.scheduler.noise_sampler = BrownianTreeNoiseSampler(
                    model_output, sigma_min=self.model.scheduler.config.sigma_min,
                    sigma_max=self.model.scheduler.config.sigma_max, seed=None)
            variance_noise = self.model.scheduler.noise_sampler(
                self.model.scheduler.sigmas[self.model.scheduler.step_index],
                self.model.scheduler.sigmas[self.model.scheduler.step_index + 1]).to(model_output.device)

        if first_order or self.model.scheduler.config.solver_order == 1 or \
                self.model.scheduler.lower_order_nums < 1 or lower_order_final:
            prev_sample = self.model.scheduler.dpm_solver_first_order_update(
                model_output, sample=sample, noise=variance_noise)
        elif self.model.scheduler.config.solver_order == 2 or \
                self.model.scheduler.lower_order_nums < 2 or lower_order_second:
            prev_sample = self.model.scheduler.multistep_dpm_solver_second_order_update(
                self.model.scheduler.model_outputs, sample=sample, noise=variance_noise)

        if self.model.scheduler.lower_order_nums < self.model.scheduler.config.solver_order:
            self.model.scheduler.lower_order_nums += 1

        # upon completion increase step index by one
        self.model.scheduler._step_index += 1

        return prev_sample

    def unet_forward(self,
                     sample: torch.FloatTensor,
                     timestep: Union[torch.Tensor, float, int],
                     encoder_hidden_states: torch.Tensor,
                     encoder_attention_mask: Optional[torch.Tensor] = None,
                     return_dict: bool = True,
                     **kwargs) -> Tuple:

        # Create text_audio_duration_embeds and audio_duration_embeds
        embeds = torch.cat([encoder_hidden_states, self.seconds_start_hidden_states, self.seconds_end_hidden_states],
                           dim=1)
        if encoder_attention_mask is None:
            # handle the batched case
            if embeds.shape[0] > 1:
                embeds[0] = torch.zeros_like(embeds[0], device=embeds.device)
            else:
                embeds = torch.zeros_like(embeds, device=embeds.device)

        noise_pred = self.model.transformer(sample,
                                            timestep.unsqueeze(0),
                                            encoder_hidden_states=embeds,
                                            global_hidden_states=self.audio_duration_embeds,
                                            rotary_embedding=self.rotary_embedding)

        if not return_dict:
            return (noise_pred.sample,)

        return noise_pred, None, None


def load_model(model_id: str, device: torch.device,
               double_precision: bool = False, token: Optional[str] = None) -> PipelineWrapper:
    if 'audioldm2' in model_id:
        ldm_stable = AudioLDM2Wrapper(model_id=model_id, device=device, double_precision=double_precision, token=token)
    elif 'stable-audio' in model_id:
        ldm_stable = StableAudWrapper(model_id=model_id, device=device, double_precision=double_precision, token=token)
    ldm_stable.load_scheduler()
    torch.cuda.empty_cache()
    return ldm_stable