|
import os |
|
import warnings |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
|
|
norm_layer = nn.InstanceNorm2d |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_features): |
|
super(ResidualBlock, self).__init__() |
|
|
|
conv_block = [ nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features), |
|
nn.ReLU(inplace=True), |
|
nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features) |
|
] |
|
|
|
self.conv_block = nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
return x + self.conv_block(x) |
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): |
|
super(Generator, self).__init__() |
|
|
|
|
|
model0 = [ nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, 64, 7), |
|
norm_layer(64), |
|
nn.ReLU(inplace=True) ] |
|
self.model0 = nn.Sequential(*model0) |
|
|
|
|
|
model1 = [] |
|
in_features = 64 |
|
out_features = in_features*2 |
|
for _ in range(2): |
|
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True) ] |
|
in_features = out_features |
|
out_features = in_features*2 |
|
self.model1 = nn.Sequential(*model1) |
|
|
|
model2 = [] |
|
|
|
for _ in range(n_residual_blocks): |
|
model2 += [ResidualBlock(in_features)] |
|
self.model2 = nn.Sequential(*model2) |
|
|
|
|
|
model3 = [] |
|
out_features = in_features//2 |
|
for _ in range(2): |
|
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True) ] |
|
in_features = out_features |
|
out_features = in_features//2 |
|
self.model3 = nn.Sequential(*model3) |
|
|
|
|
|
model4 = [ nn.ReflectionPad2d(3), |
|
nn.Conv2d(64, output_nc, 7)] |
|
if sigmoid: |
|
model4 += [nn.Sigmoid()] |
|
|
|
self.model4 = nn.Sequential(*model4) |
|
|
|
def forward(self, x, cond=None): |
|
out = self.model0(x) |
|
out = self.model1(out) |
|
out = self.model2(out) |
|
out = self.model3(out) |
|
out = self.model4(out) |
|
|
|
return out |
|
|
|
|
|
class LineartDetector: |
|
def __init__(self, model, coarse_model): |
|
self.model = model |
|
self.model_coarse = coarse_model |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, coarse_filename=None, cache_dir=None, local_files_only=False): |
|
filename = filename or "sk_model.pth" |
|
coarse_filename = coarse_filename or "sk_model2.pth" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
coarse_model_path = os.path.join(pretrained_model_or_path, coarse_filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
coarse_model_path = hf_hub_download(pretrained_model_or_path, coarse_filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
model = Generator(3, 1, 3) |
|
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) |
|
model.eval() |
|
|
|
coarse_model = Generator(3, 1, 3) |
|
coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu'))) |
|
coarse_model.eval() |
|
|
|
return cls(model, coarse_model) |
|
|
|
def to(self, device): |
|
self.model.to(device) |
|
self.model_coarse.to(device) |
|
return self |
|
|
|
def __call__(self, input_image, coarse=False, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): |
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
device = next(iter(self.model.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
model = self.model_coarse if coarse else self.model |
|
assert input_image.ndim == 3 |
|
image = input_image |
|
with torch.no_grad(): |
|
image = torch.from_numpy(image).float().to(device) |
|
image = image / 255.0 |
|
image = rearrange(image, 'h w c -> 1 c h w') |
|
line = model(image)[0][0] |
|
|
|
line = line.cpu().numpy() |
|
line = (line * 255.0).clip(0, 255).astype(np.uint8) |
|
|
|
detected_map = line |
|
|
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
detected_map = 255 - detected_map |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|