|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import warnings |
|
from typing import Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from .automatic_mask_generator import SamAutomaticMaskGenerator |
|
from .build_sam import sam_model_registry |
|
|
|
|
|
class SamDetector: |
|
def __init__(self, mask_generator: SamAutomaticMaskGenerator): |
|
self.mask_generator = mask_generator |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, model_type="vit_h", filename="sam_vit_h_4b8939.pth", subfolder=None, cache_dir=None): |
|
""" |
|
Possible model_type : vit_h, vit_l, vit_b, vit_t |
|
download weights from https://github.com/facebookresearch/segment-anything |
|
""" |
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, subfolder=subfolder, cache_dir=cache_dir) |
|
|
|
sam = sam_model_registry[model_type](checkpoint=model_path) |
|
|
|
if torch.cuda.is_available(): |
|
sam.to("cuda") |
|
|
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
return cls(mask_generator) |
|
|
|
|
|
def show_anns(self, anns): |
|
if len(anns) == 0: |
|
return |
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) |
|
h, w = anns[0]['segmentation'].shape |
|
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB") |
|
for ann in sorted_anns: |
|
m = ann['segmentation'] |
|
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8) |
|
for i in range(3): |
|
img[:,:,i] = np.random.randint(255, dtype=np.uint8) |
|
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m*255))) |
|
|
|
return np.array(final_img, dtype=np.uint8) |
|
|
|
def __call__(self, input_image: Union[np.ndarray, Image.Image]=None, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs) -> Image.Image: |
|
if "image" in kwargs: |
|
warnings.warn("image is deprecated, please use `input_image=...` instead.", DeprecationWarning) |
|
input_image = kwargs.pop("image") |
|
|
|
if input_image is None: |
|
raise ValueError("input_image must be defined.") |
|
|
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
|
|
masks = self.mask_generator.generate(input_image) |
|
|
|
map = self.show_anns(masks) |
|
|
|
detected_map = map |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|