|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .Fsmish import smish as Fsmish |
|
from .Xsmish import Smish |
|
|
|
|
|
def weight_init(m): |
|
if isinstance(m, (nn.Conv2d,)): |
|
torch.nn.init.xavier_normal_(m.weight, gain=1.0) |
|
|
|
if m.bias is not None: |
|
torch.nn.init.zeros_(m.bias) |
|
|
|
|
|
if isinstance(m, (nn.ConvTranspose2d,)): |
|
torch.nn.init.xavier_normal_(m.weight, gain=1.0) |
|
if m.bias is not None: |
|
torch.nn.init.zeros_(m.bias) |
|
|
|
|
|
class CoFusion(nn.Module): |
|
|
|
|
|
def __init__(self, in_ch, out_ch): |
|
super(CoFusion, self).__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_ch, 32, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.conv3 = nn.Conv2d( |
|
32, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.relu = nn.ReLU() |
|
self.norm_layer1 = nn.GroupNorm(4, 32) |
|
|
|
def forward(self, x): |
|
|
|
attn = self.relu(self.norm_layer1(self.conv1(x))) |
|
attn = F.softmax(self.conv3(attn), dim=1) |
|
return ((x * attn).sum(1)).unsqueeze(1) |
|
|
|
|
|
class CoFusion2(nn.Module): |
|
|
|
def __init__(self, in_ch, out_ch): |
|
super(CoFusion2, self).__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_ch, 32, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.conv3 = nn.Conv2d( |
|
32, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.smish = Smish() |
|
|
|
def forward(self, x): |
|
|
|
attn = self.conv1(self.smish(x)) |
|
attn = self.conv3(self.smish(attn)) |
|
|
|
|
|
return ((x * attn).sum(1)).unsqueeze(1) |
|
|
|
|
|
class DoubleFusion(nn.Module): |
|
|
|
def __init__(self, in_ch, out_ch): |
|
super(DoubleFusion, self).__init__() |
|
self.DWconv1 = nn.Conv2d( |
|
in_ch, in_ch * 8, kernel_size=3, stride=1, padding=1, groups=in_ch |
|
) |
|
self.PSconv1 = nn.PixelShuffle(1) |
|
|
|
self.DWconv2 = nn.Conv2d( |
|
24, 24 * 1, kernel_size=3, stride=1, padding=1, groups=24 |
|
) |
|
|
|
self.AF = Smish() |
|
|
|
def forward(self, x): |
|
|
|
attn = self.PSconv1( |
|
self.DWconv1(self.AF(x)) |
|
) |
|
|
|
attn2 = self.PSconv1( |
|
self.DWconv2(self.AF(attn)) |
|
) |
|
|
|
return Fsmish(((attn2 + attn).sum(1)).unsqueeze(1)) |
|
|
|
|
|
class _DenseLayer(nn.Sequential): |
|
def __init__(self, input_features, out_features): |
|
super(_DenseLayer, self).__init__() |
|
|
|
( |
|
self.add_module( |
|
"conv1", |
|
nn.Conv2d( |
|
input_features, |
|
out_features, |
|
kernel_size=3, |
|
stride=1, |
|
padding=2, |
|
bias=True, |
|
), |
|
), |
|
) |
|
(self.add_module("smish1", Smish()),) |
|
self.add_module( |
|
"conv2", |
|
nn.Conv2d(out_features, out_features, kernel_size=3, stride=1, bias=True), |
|
) |
|
|
|
def forward(self, x): |
|
x1, x2 = x |
|
|
|
new_features = super(_DenseLayer, self).forward(Fsmish(x1)) |
|
|
|
return 0.5 * (new_features + x2), x2 |
|
|
|
|
|
class _DenseBlock(nn.Sequential): |
|
def __init__(self, num_layers, input_features, out_features): |
|
super(_DenseBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = _DenseLayer(input_features, out_features) |
|
self.add_module("denselayer%d" % (i + 1), layer) |
|
input_features = out_features |
|
|
|
|
|
class UpConvBlock(nn.Module): |
|
def __init__(self, in_features, up_scale): |
|
super(UpConvBlock, self).__init__() |
|
self.up_factor = 2 |
|
self.constant_features = 16 |
|
|
|
layers = self.make_deconv_layers(in_features, up_scale) |
|
assert layers is not None, layers |
|
self.features = nn.Sequential(*layers) |
|
|
|
def make_deconv_layers(self, in_features, up_scale): |
|
layers = [] |
|
all_pads = [0, 0, 1, 3, 7] |
|
for i in range(up_scale): |
|
kernel_size = 2**up_scale |
|
pad = all_pads[up_scale] |
|
out_features = self.compute_out_features(i, up_scale) |
|
layers.append(nn.Conv2d(in_features, out_features, 1)) |
|
layers.append(Smish()) |
|
layers.append( |
|
nn.ConvTranspose2d( |
|
out_features, out_features, kernel_size, stride=2, padding=pad |
|
) |
|
) |
|
in_features = out_features |
|
return layers |
|
|
|
def compute_out_features(self, idx, up_scale): |
|
return 1 if idx == up_scale - 1 else self.constant_features |
|
|
|
def forward(self, x): |
|
return self.features(x) |
|
|
|
|
|
class SingleConvBlock(nn.Module): |
|
def __init__(self, in_features, out_features, stride, use_ac=False): |
|
super(SingleConvBlock, self).__init__() |
|
|
|
self.use_ac = use_ac |
|
self.conv = nn.Conv2d(in_features, out_features, 1, stride=stride, bias=True) |
|
if self.use_ac: |
|
self.smish = Smish() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
if self.use_ac: |
|
return self.smish(x) |
|
else: |
|
return x |
|
|
|
|
|
class DoubleConvBlock(nn.Module): |
|
def __init__( |
|
self, in_features, mid_features, out_features=None, stride=1, use_act=True |
|
): |
|
super(DoubleConvBlock, self).__init__() |
|
|
|
self.use_act = use_act |
|
if out_features is None: |
|
out_features = mid_features |
|
self.conv1 = nn.Conv2d(in_features, mid_features, 3, padding=1, stride=stride) |
|
self.conv2 = nn.Conv2d(mid_features, out_features, 3, padding=1) |
|
self.smish = Smish() |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.smish(x) |
|
x = self.conv2(x) |
|
if self.use_act: |
|
x = self.smish(x) |
|
return x |
|
|
|
|
|
class TED(nn.Module): |
|
"""Definition of Tiny and Efficient Edge Detector |
|
model |
|
""" |
|
|
|
def __init__(self): |
|
super(TED, self).__init__() |
|
self.block_1 = DoubleConvBlock( |
|
3, |
|
16, |
|
16, |
|
stride=2, |
|
) |
|
self.block_2 = DoubleConvBlock(16, 32, use_act=False) |
|
self.dblock_3 = _DenseBlock(1, 32, 48) |
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
|
|
self.side_1 = SingleConvBlock(16, 32, 2) |
|
|
|
|
|
self.pre_dense_3 = SingleConvBlock(32, 48, 1) |
|
|
|
|
|
self.up_block_1 = UpConvBlock(16, 1) |
|
self.up_block_2 = UpConvBlock(32, 1) |
|
self.up_block_3 = UpConvBlock(48, 2) |
|
|
|
self.block_cat = DoubleFusion(3, 3) |
|
|
|
self.apply(weight_init) |
|
|
|
def slice(self, tensor, slice_shape): |
|
t_shape = tensor.shape |
|
img_h, img_w = slice_shape |
|
if img_w != t_shape[-1] or img_h != t_shape[2]: |
|
new_tensor = F.interpolate( |
|
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False |
|
) |
|
|
|
else: |
|
new_tensor = tensor |
|
|
|
return new_tensor |
|
|
|
def resize_input(self, tensor): |
|
t_shape = tensor.shape |
|
if t_shape[2] % 8 != 0 or t_shape[3] % 8 != 0: |
|
img_w = ((t_shape[3] // 8) + 1) * 8 |
|
img_h = ((t_shape[2] // 8) + 1) * 8 |
|
new_tensor = F.interpolate( |
|
tensor, size=(img_h, img_w), mode="bicubic", align_corners=False |
|
) |
|
else: |
|
new_tensor = tensor |
|
return new_tensor |
|
|
|
def crop_bdcn(data1, h, w, crop_h, crop_w): |
|
|
|
_, _, h1, w1 = data1.size() |
|
assert h <= h1 and w <= w1 |
|
data = data1[:, :, crop_h : crop_h + h, crop_w : crop_w + w] |
|
return data |
|
|
|
def forward(self, x, single_test=False): |
|
assert x.ndim == 4, x.shape |
|
|
|
|
|
|
|
block_1 = self.block_1(x) |
|
block_1_side = self.side_1(block_1) |
|
|
|
|
|
block_2 = self.block_2(block_1) |
|
block_2_down = self.maxpool(block_2) |
|
block_2_add = block_2_down + block_1_side |
|
|
|
|
|
block_3_pre_dense = self.pre_dense_3( |
|
block_2_down |
|
) |
|
block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense]) |
|
|
|
|
|
out_1 = self.up_block_1(block_1) |
|
out_2 = self.up_block_2(block_2) |
|
out_3 = self.up_block_3(block_3) |
|
|
|
results = [out_1, out_2, out_3] |
|
|
|
|
|
block_cat = torch.cat(results, dim=1) |
|
block_cat = self.block_cat(block_cat) |
|
|
|
results.append(block_cat) |
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
batch_size = 8 |
|
img_height = 352 |
|
img_width = 352 |
|
|
|
|
|
device = "cpu" |
|
input = torch.rand(batch_size, 3, img_height, img_width).to(device) |
|
|
|
print(f"input shape: {input.shape}") |
|
model = TED().to(device) |
|
output = model(input) |
|
print(f"output shapes: {[t.shape for t in output]}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|