|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from .leres.depthmap import estimateboost, estimateleres |
|
from .leres.multi_depth_model_woauxi import RelDepthModel |
|
from .leres.net_tools import strip_prefix_if_present |
|
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel |
|
from .pix2pix.options.test_options import TestOptions |
|
|
|
|
|
class LeresDetector: |
|
def __init__(self, model, pix2pixmodel): |
|
self.model = model |
|
self.pix2pixmodel = pix2pixmodel |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None, local_files_only=False): |
|
filename = filename or "res101.pth" |
|
pix2pix_filename = pix2pix_filename or "latest_net_G.pth" |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
checkpoint = torch.load(model_path, map_location=torch.device('cpu')) |
|
|
|
model = RelDepthModel(backbone='resnext101') |
|
model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True) |
|
del checkpoint |
|
|
|
if os.path.isdir(pretrained_model_or_path): |
|
model_path = os.path.join(pretrained_model_or_path, pix2pix_filename) |
|
else: |
|
model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir, local_files_only=local_files_only) |
|
|
|
opt = TestOptions().parse() |
|
if not torch.cuda.is_available(): |
|
opt.gpu_ids = [] |
|
pix2pixmodel = Pix2Pix4DepthModel(opt) |
|
pix2pixmodel.save_dir = os.path.dirname(model_path) |
|
pix2pixmodel.load_networks('latest') |
|
pix2pixmodel.eval() |
|
|
|
return cls(model, pix2pixmodel) |
|
|
|
def to(self, device): |
|
self.model.to(device) |
|
|
|
|
|
return self |
|
|
|
def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"): |
|
device = next(iter(self.model.parameters())).device |
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
assert input_image.ndim == 3 |
|
height, width, dim = input_image.shape |
|
|
|
with torch.no_grad(): |
|
|
|
if boost: |
|
depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height)) |
|
else: |
|
depth = estimateleres(input_image, self.model, width, height) |
|
|
|
numbytes=2 |
|
depth_min = depth.min() |
|
depth_max = depth.max() |
|
max_val = (2**(8*numbytes))-1 |
|
|
|
|
|
if depth_max - depth_min > np.finfo("float").eps: |
|
out = max_val * (depth - depth_min) / (depth_max - depth_min) |
|
else: |
|
out = np.zeros(depth.shape) |
|
|
|
|
|
depth_image = out.astype("uint16") |
|
|
|
|
|
depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0)) |
|
|
|
|
|
if thr_a != 0: |
|
thr_a = ((thr_a/100)*255) |
|
depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1] |
|
|
|
|
|
depth_image = cv2.bitwise_not(depth_image) |
|
|
|
|
|
if thr_b != 0: |
|
thr_b = ((thr_b/100)*255) |
|
depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1] |
|
|
|
detected_map = depth_image |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|