|
import warnings |
|
from typing import Union |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from ..util import HWC3, resize_image |
|
from .mediapipe_face_common import generate_annotation |
|
|
|
|
|
class MediapipeFaceDetector: |
|
def __call__(self, |
|
input_image: Union[np.ndarray, Image.Image] = None, |
|
max_faces: int = 1, |
|
min_confidence: float = 0.5, |
|
output_type: str = "pil", |
|
detect_resolution: int = 512, |
|
image_resolution: int = 512, |
|
**kwargs): |
|
|
|
if "image" in kwargs: |
|
warnings.warn("image is deprecated, please use `input_image=...` instead.", DeprecationWarning) |
|
input_image = kwargs.pop("image") |
|
if input_image is None: |
|
raise ValueError("input_image must be defined.") |
|
|
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
detected_map = generate_annotation(input_image, max_faces, min_confidence) |
|
detected_map = HWC3(detected_map) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|