|
import warnings |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
from ..util import HWC3, img2mask, make_noise_disk, resize_image |
|
|
|
|
|
class ContentShuffleDetector: |
|
def __call__(self, input_image, h=None, w=None, f=None, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): |
|
if "return_pil" in kwargs: |
|
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) |
|
output_type = "pil" if kwargs["return_pil"] else "np" |
|
if type(output_type) is bool: |
|
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") |
|
if output_type: |
|
output_type = "pil" |
|
|
|
if not isinstance(input_image, np.ndarray): |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
|
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, detect_resolution) |
|
|
|
H, W, C = input_image.shape |
|
if h is None: |
|
h = H |
|
if w is None: |
|
w = W |
|
if f is None: |
|
f = 256 |
|
x = make_noise_disk(h, w, 1, f) * float(W - 1) |
|
y = make_noise_disk(h, w, 1, f) * float(H - 1) |
|
flow = np.concatenate([x, y], axis=2).astype(np.float32) |
|
detected_map = cv2.remap(input_image, flow, None, cv2.INTER_LINEAR) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
if output_type == "pil": |
|
detected_map = Image.fromarray(detected_map) |
|
|
|
return detected_map |
|
|
|
|
|
class ColorShuffleDetector: |
|
def __call__(self, img): |
|
H, W, C = img.shape |
|
F = np.random.randint(64, 384) |
|
A = make_noise_disk(H, W, 3, F) |
|
B = make_noise_disk(H, W, 3, F) |
|
C = (A + B) / 2.0 |
|
A = (C + (A - C) * 3.0).clip(0, 1) |
|
B = (C + (B - C) * 3.0).clip(0, 1) |
|
L = img.astype(np.float32) / 255.0 |
|
Y = A * L + B * (1 - L) |
|
Y -= np.min(Y, axis=(0, 1), keepdims=True) |
|
Y /= np.maximum(np.max(Y, axis=(0, 1), keepdims=True), 1e-5) |
|
Y *= 255.0 |
|
return Y.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
class GrayDetector: |
|
def __call__(self, img): |
|
eps = 1e-5 |
|
X = img.astype(np.float32) |
|
r, g, b = X[:, :, 0], X[:, :, 1], X[:, :, 2] |
|
kr, kg, kb = [random.random() + eps for _ in range(3)] |
|
ks = kr + kg + kb |
|
kr /= ks |
|
kg /= ks |
|
kb /= ks |
|
Y = r * kr + g * kg + b * kb |
|
Y = np.stack([Y] * 3, axis=2) |
|
return Y.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
class DownSampleDetector: |
|
def __call__(self, img, level=3, k=16.0): |
|
h = img.astype(np.float32) |
|
for _ in range(level): |
|
h += np.random.normal(loc=0.0, scale=k, size=h.shape) |
|
h = cv2.pyrDown(h) |
|
for _ in range(level): |
|
h = cv2.pyrUp(h) |
|
h += np.random.normal(loc=0.0, scale=k, size=h.shape) |
|
return h.clip(0, 255).astype(np.uint8) |
|
|
|
|
|
class Image2MaskShuffleDetector: |
|
def __init__(self, resolution=(640, 512)): |
|
self.H, self.W = resolution |
|
|
|
def __call__(self, img): |
|
m = img2mask(img, self.H, self.W) |
|
m *= 255.0 |
|
return m.clip(0, 255).astype(np.uint8) |
|
|