Samantha Hipple commited on
Commit
dcdc943
1 Parent(s): e4efc7a

deepface ?

Browse files
Files changed (2) hide show
  1. app.py +13 -7
  2. requirements.txt +0 -0
app.py CHANGED
@@ -1,20 +1,26 @@
1
  import streamlit as st
2
- from transformers import pipeline
 
3
  from PIL import Image
4
 
5
- pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
6
 
7
- st.title("Hot Dog? Or Not?")
 
8
 
9
- file_name = st.file_uploader("Upload a hot dog candidate image")
 
10
 
11
  if file_name is not None:
12
  col1, col2 = st.columns(2)
13
 
14
  image = Image.open(file_name)
15
  col1.image(image, use_column_width=True)
16
- predictions = pipeline(image)
 
17
 
18
  col2.header("Probabilities")
19
- for p in predictions:
20
- col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
 
 
 
1
  import streamlit as st
2
+ # from transformers import pipeline
3
+ from deepface import DeepFace
4
  from PIL import Image
5
 
6
+ # pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
7
 
8
+ st.title("Your Emotions? Or Nah?")
9
+ # st.title("Hot Dog? Or Not?")
10
 
11
+ file_name = st.file_uploader("Upload a photo of your face.")
12
+ # file_name = st.file_uploader("Upload a hot dog candidate image")
13
 
14
  if file_name is not None:
15
  col1, col2 = st.columns(2)
16
 
17
  image = Image.open(file_name)
18
  col1.image(image, use_column_width=True)
19
+ predictions = DeepFace.analyze(image, actions=['emotion'])
20
+ # predictions = pipeline(image)
21
 
22
  col2.header("Probabilities")
23
+ # for p in predictions:
24
+ for emotion in predictions['emotion']:
25
+ # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
26
+ col2.subheader(f"{emotion.keys()}: {emotion.values()}")
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ