Spaces:
Running
Running
Merge pull request #51 from barun-saha/visual
Browse files
app.py
CHANGED
@@ -20,7 +20,6 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
20 |
sys.path.append('..')
|
21 |
sys.path.append('../..')
|
22 |
|
23 |
-
import helpers.icons_embeddings as ice
|
24 |
from global_config import GlobalConfig
|
25 |
from helpers import llm_helper, pptx_helper, text_helper
|
26 |
|
@@ -56,25 +55,16 @@ def _get_prompt_template(is_refinement: bool) -> str:
|
|
56 |
|
57 |
|
58 |
@st.cache_resource
|
59 |
-
def _get_llm():
|
60 |
"""
|
61 |
Get an LLM instance.
|
62 |
|
|
|
|
|
63 |
:return: The LLM.
|
64 |
"""
|
65 |
|
66 |
-
return llm_helper.get_hf_endpoint()
|
67 |
-
|
68 |
-
|
69 |
-
@st.cache_data
|
70 |
-
def _get_icons_list() -> List[str]:
|
71 |
-
"""
|
72 |
-
Get a list of available icons names without the dir name and file extension.
|
73 |
-
|
74 |
-
:return: A llist of the icons.
|
75 |
-
"""
|
76 |
-
|
77 |
-
return ice.get_icons_list()
|
78 |
|
79 |
|
80 |
APP_TEXT = _load_strings()
|
@@ -89,12 +79,19 @@ logger = logging.getLogger(__name__)
|
|
89 |
|
90 |
texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
|
91 |
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
def build_ui():
|
@@ -185,14 +182,12 @@ def set_up_chat_ui():
|
|
185 |
**{
|
186 |
'instructions': list_of_msgs,
|
187 |
'previous_content': _get_last_response(),
|
188 |
-
'icons_list': '\n'.join(_get_icons_list())
|
189 |
}
|
190 |
)
|
191 |
else:
|
192 |
formatted_template = prompt_template.format(
|
193 |
**{
|
194 |
'question': prompt,
|
195 |
-
'icons_list': '\n'.join(_get_icons_list())
|
196 |
}
|
197 |
)
|
198 |
|
@@ -200,12 +195,15 @@ def set_up_chat_ui():
|
|
200 |
response = ''
|
201 |
|
202 |
try:
|
203 |
-
for chunk in _get_llm(
|
|
|
|
|
|
|
204 |
response += chunk
|
205 |
|
206 |
# Update the progress bar
|
207 |
progress_percentage = min(
|
208 |
-
len(response) / GlobalConfig.
|
209 |
)
|
210 |
progress_bar.progress(
|
211 |
progress_percentage,
|
|
|
20 |
sys.path.append('..')
|
21 |
sys.path.append('../..')
|
22 |
|
|
|
23 |
from global_config import GlobalConfig
|
24 |
from helpers import llm_helper, pptx_helper, text_helper
|
25 |
|
|
|
55 |
|
56 |
|
57 |
@st.cache_resource
|
58 |
+
def _get_llm(repo_id: str, max_new_tokens: int):
|
59 |
"""
|
60 |
Get an LLM instance.
|
61 |
|
62 |
+
:param repo_id: The model name.
|
63 |
+
:param max_new_tokens: The max new tokens to generate.
|
64 |
:return: The LLM.
|
65 |
"""
|
66 |
|
67 |
+
return llm_helper.get_hf_endpoint(repo_id, max_new_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
APP_TEXT = _load_strings()
|
|
|
79 |
|
80 |
texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
|
81 |
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
|
82 |
+
|
83 |
+
with st.sidebar:
|
84 |
+
pptx_template = st.sidebar.radio(
|
85 |
+
'Select a presentation template:',
|
86 |
+
texts,
|
87 |
+
captions=captions,
|
88 |
+
horizontal=True
|
89 |
+
)
|
90 |
+
st.divider()
|
91 |
+
llm_to_use = st.sidebar.selectbox(
|
92 |
+
'Select an LLM to use:',
|
93 |
+
[f'{k} ({v["description"]})' for k, v in GlobalConfig.HF_MODELS.items()]
|
94 |
+
).split(' ')[0]
|
95 |
|
96 |
|
97 |
def build_ui():
|
|
|
182 |
**{
|
183 |
'instructions': list_of_msgs,
|
184 |
'previous_content': _get_last_response(),
|
|
|
185 |
}
|
186 |
)
|
187 |
else:
|
188 |
formatted_template = prompt_template.format(
|
189 |
**{
|
190 |
'question': prompt,
|
|
|
191 |
}
|
192 |
)
|
193 |
|
|
|
195 |
response = ''
|
196 |
|
197 |
try:
|
198 |
+
for chunk in _get_llm(
|
199 |
+
repo_id=llm_to_use,
|
200 |
+
max_new_tokens=GlobalConfig.HF_MODELS[llm_to_use]['max_new_tokens']
|
201 |
+
).stream(formatted_template):
|
202 |
response += chunk
|
203 |
|
204 |
# Update the progress bar
|
205 |
progress_percentage = min(
|
206 |
+
len(response) / GlobalConfig.HF_MODELS[llm_to_use]['max_new_tokens'], 0.95
|
207 |
)
|
208 |
progress_bar.progress(
|
209 |
progress_percentage,
|
global_config.py
CHANGED
@@ -17,10 +17,18 @@ class GlobalConfig:
|
|
17 |
A data class holding the configurations.
|
18 |
"""
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
LLM_MODEL_TEMPERATURE = 0.2
|
22 |
LLM_MODEL_MIN_OUTPUT_LENGTH = 100
|
23 |
-
LLM_MODEL_MAX_OUTPUT_LENGTH = 4 * 4096 # tokens
|
24 |
LLM_MODEL_MAX_INPUT_LENGTH = 400 # characters
|
25 |
|
26 |
HUGGINGFACEHUB_API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN', '')
|
|
|
17 |
A data class holding the configurations.
|
18 |
"""
|
19 |
|
20 |
+
HF_MODELS = {
|
21 |
+
'mistralai/Mistral-Nemo-Instruct-2407': {
|
22 |
+
'description': 'longer response',
|
23 |
+
'max_new_tokens': 12228
|
24 |
+
},
|
25 |
+
'mistralai/Mistral-7B-Instruct-v0.2': {
|
26 |
+
'description': 'faster, shorter',
|
27 |
+
'max_new_tokens': 8192
|
28 |
+
},
|
29 |
+
}
|
30 |
LLM_MODEL_TEMPERATURE = 0.2
|
31 |
LLM_MODEL_MIN_OUTPUT_LENGTH = 100
|
|
|
32 |
LLM_MODEL_MAX_INPUT_LENGTH = 400 # characters
|
33 |
|
34 |
HUGGINGFACEHUB_API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN', '')
|
helpers/llm_helper.py
CHANGED
@@ -9,7 +9,6 @@ from langchain_core.language_models import LLM
|
|
9 |
from global_config import GlobalConfig
|
10 |
|
11 |
|
12 |
-
HF_API_URL = f"https://api-inference.huggingface.co/models/{GlobalConfig.HF_LLM_MODEL_NAME}"
|
13 |
HF_API_HEADERS = {"Authorization": f"Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}"}
|
14 |
REQUEST_TIMEOUT = 35
|
15 |
|
@@ -28,18 +27,20 @@ http_session.mount('https://', adapter)
|
|
28 |
http_session.mount('http://', adapter)
|
29 |
|
30 |
|
31 |
-
def get_hf_endpoint() -> LLM:
|
32 |
"""
|
33 |
Get an LLM via the HuggingFaceEndpoint of LangChain.
|
34 |
|
35 |
-
:
|
|
|
|
|
36 |
"""
|
37 |
|
38 |
-
logger.debug('Getting LLM via HF endpoint')
|
39 |
|
40 |
return HuggingFaceEndpoint(
|
41 |
-
repo_id=
|
42 |
-
max_new_tokens=
|
43 |
top_k=40,
|
44 |
top_p=0.95,
|
45 |
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
|
@@ -51,69 +52,69 @@ def get_hf_endpoint() -> LLM:
|
|
51 |
)
|
52 |
|
53 |
|
54 |
-
def hf_api_query(payload: dict) -> dict:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
def generate_slides_content(topic: str) -> str:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
|
119 |
if __name__ == '__main__':
|
|
|
9 |
from global_config import GlobalConfig
|
10 |
|
11 |
|
|
|
12 |
HF_API_HEADERS = {"Authorization": f"Bearer {GlobalConfig.HUGGINGFACEHUB_API_TOKEN}"}
|
13 |
REQUEST_TIMEOUT = 35
|
14 |
|
|
|
27 |
http_session.mount('http://', adapter)
|
28 |
|
29 |
|
30 |
+
def get_hf_endpoint(repo_id: str, max_new_tokens: int) -> LLM:
|
31 |
"""
|
32 |
Get an LLM via the HuggingFaceEndpoint of LangChain.
|
33 |
|
34 |
+
:param repo_id: The model name.
|
35 |
+
:param max_new_tokens: The max new tokens to generate.
|
36 |
+
:return: The HF LLM inference endpoint.
|
37 |
"""
|
38 |
|
39 |
+
logger.debug('Getting LLM via HF endpoint: %s', repo_id)
|
40 |
|
41 |
return HuggingFaceEndpoint(
|
42 |
+
repo_id=repo_id,
|
43 |
+
max_new_tokens=max_new_tokens,
|
44 |
top_k=40,
|
45 |
top_p=0.95,
|
46 |
temperature=GlobalConfig.LLM_MODEL_TEMPERATURE,
|
|
|
52 |
)
|
53 |
|
54 |
|
55 |
+
# def hf_api_query(payload: dict) -> dict:
|
56 |
+
# """
|
57 |
+
# Invoke HF inference end-point API.
|
58 |
+
#
|
59 |
+
# :param payload: The prompt for the LLM and related parameters.
|
60 |
+
# :return: The output from the LLM.
|
61 |
+
# """
|
62 |
+
#
|
63 |
+
# try:
|
64 |
+
# response = http_session.post(
|
65 |
+
# HF_API_URL,
|
66 |
+
# headers=HF_API_HEADERS,
|
67 |
+
# json=payload,
|
68 |
+
# timeout=REQUEST_TIMEOUT
|
69 |
+
# )
|
70 |
+
# result = response.json()
|
71 |
+
# except requests.exceptions.Timeout as te:
|
72 |
+
# logger.error('*** Error: hf_api_query timeout! %s', str(te))
|
73 |
+
# result = []
|
74 |
+
#
|
75 |
+
# return result
|
76 |
+
|
77 |
+
|
78 |
+
# def generate_slides_content(topic: str) -> str:
|
79 |
+
# """
|
80 |
+
# Generate the outline/contents of slides for a presentation on a given topic.
|
81 |
+
#
|
82 |
+
# :param topic: Topic on which slides are to be generated.
|
83 |
+
# :return: The content in JSON format.
|
84 |
+
# """
|
85 |
+
#
|
86 |
+
# with open(GlobalConfig.SLIDES_TEMPLATE_FILE, 'r', encoding='utf-8') as in_file:
|
87 |
+
# template_txt = in_file.read().strip()
|
88 |
+
# template_txt = template_txt.replace('<REPLACE_PLACEHOLDER>', topic)
|
89 |
+
#
|
90 |
+
# output = hf_api_query({
|
91 |
+
# 'inputs': template_txt,
|
92 |
+
# 'parameters': {
|
93 |
+
# 'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE,
|
94 |
+
# 'min_length': GlobalConfig.LLM_MODEL_MIN_OUTPUT_LENGTH,
|
95 |
+
# 'max_length': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
|
96 |
+
# 'max_new_tokens': GlobalConfig.LLM_MODEL_MAX_OUTPUT_LENGTH,
|
97 |
+
# 'num_return_sequences': 1,
|
98 |
+
# 'return_full_text': False,
|
99 |
+
# # "repetition_penalty": 0.0001
|
100 |
+
# },
|
101 |
+
# 'options': {
|
102 |
+
# 'wait_for_model': True,
|
103 |
+
# 'use_cache': True
|
104 |
+
# }
|
105 |
+
# })
|
106 |
+
#
|
107 |
+
# output = output[0]['generated_text'].strip()
|
108 |
+
# # output = output[len(template_txt):]
|
109 |
+
#
|
110 |
+
# json_end_idx = output.rfind('```')
|
111 |
+
# if json_end_idx != -1:
|
112 |
+
# # logging.debug(f'{json_end_idx=}')
|
113 |
+
# output = output[:json_end_idx]
|
114 |
+
#
|
115 |
+
# logger.debug('generate_slides_content: output: %s', output)
|
116 |
+
#
|
117 |
+
# return output
|
118 |
|
119 |
|
120 |
if __name__ == '__main__':
|
langchain_templates/chat_prompts/initial_template_v4_two_cols_img.txt
CHANGED
@@ -13,12 +13,8 @@ In addition, for each slide, add image keywords based on the content of the resp
|
|
13 |
These keywords will be later used to search for images from the Web relevant to the slide content.
|
14 |
|
15 |
In addition, create one slide containing 4 TO 6 icons (pictograms) illustrating some key ideas/aspects/concepts relevant to the topic.
|
16 |
-
In this slide, each line of text will begin with the name of a relevant icon enclosed between [[ and ]].
|
17 |
-
|
18 |
-
|
19 |
-
<ICONS>
|
20 |
-
{icons_list}
|
21 |
-
</ICONS>
|
22 |
|
23 |
The content of each slide should be VERBOSE, DESCRIPTIVE, and very DETAILED. Each bullet point should be detailed and explanatory, not just short phrases.
|
24 |
|
|
|
13 |
These keywords will be later used to search for images from the Web relevant to the slide content.
|
14 |
|
15 |
In addition, create one slide containing 4 TO 6 icons (pictograms) illustrating some key ideas/aspects/concepts relevant to the topic.
|
16 |
+
In this slide, each line of text will begin with the name of a relevant icon enclosed between [[ and ]], e.g., [[machine-learning]] and [[fairness]].
|
17 |
+
Insert icons only in this slide.
|
|
|
|
|
|
|
|
|
18 |
|
19 |
The content of each slide should be VERBOSE, DESCRIPTIVE, and very DETAILED. Each bullet point should be detailed and explanatory, not just short phrases.
|
20 |
|
langchain_templates/chat_prompts/refinement_template_v4_two_cols_img.txt
CHANGED
@@ -14,12 +14,8 @@ In addition, for each slide, add image keywords based on the content of the resp
|
|
14 |
These keywords will be later used to search for images from the Web relevant to the slide content.
|
15 |
|
16 |
In addition, create one slide containing 4 TO 6 icons (pictograms) illustrating some key ideas/aspects/concepts relevant to the topic.
|
17 |
-
In this slide, each line of text will begin with the name of a relevant icon enclosed between [[ and ]].
|
18 |
-
|
19 |
-
|
20 |
-
<ICONS>
|
21 |
-
{icons_list}
|
22 |
-
</ICONS>
|
23 |
|
24 |
The content of each slide should be VERBOSE, DESCRIPTIVE, and very DETAILED. Each bullet point should be detailed and explanatory, not just short phrases.
|
25 |
|
|
|
14 |
These keywords will be later used to search for images from the Web relevant to the slide content.
|
15 |
|
16 |
In addition, create one slide containing 4 TO 6 icons (pictograms) illustrating some key ideas/aspects/concepts relevant to the topic.
|
17 |
+
In this slide, each line of text will begin with the name of a relevant icon enclosed between [[ and ]], e.g., [[machine-learning]] and [[fairness]].
|
18 |
+
Insert icons only in this slide.
|
|
|
|
|
|
|
|
|
19 |
|
20 |
The content of each slide should be VERBOSE, DESCRIPTIVE, and very DETAILED. Each bullet point should be detailed and explanatory, not just short phrases.
|
21 |
|
legacy_app.py
DELETED
@@ -1,294 +0,0 @@
|
|
1 |
-
import pathlib
|
2 |
-
import logging
|
3 |
-
import tempfile
|
4 |
-
from typing import List, Tuple
|
5 |
-
|
6 |
-
import json5
|
7 |
-
import metaphor_python as metaphor
|
8 |
-
import streamlit as st
|
9 |
-
|
10 |
-
from helpers import llm_helper, pptx_helper
|
11 |
-
from global_config import GlobalConfig
|
12 |
-
|
13 |
-
|
14 |
-
APP_TEXT = json5.loads(open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8').read())
|
15 |
-
GB_CONVERTER = 2 ** 30
|
16 |
-
|
17 |
-
|
18 |
-
logger = logging.getLogger(__name__)
|
19 |
-
|
20 |
-
|
21 |
-
@st.cache_data
|
22 |
-
def get_contents_wrapper(text: str) -> str:
|
23 |
-
"""
|
24 |
-
Fetch and cache the slide deck contents on a topic by calling an external API.
|
25 |
-
|
26 |
-
:param text: The presentation topic.
|
27 |
-
:return: The slide deck contents or outline in JSON format.
|
28 |
-
"""
|
29 |
-
|
30 |
-
logger.info('LLM call because of cache miss...')
|
31 |
-
return llm_helper.generate_slides_content(text).strip()
|
32 |
-
|
33 |
-
|
34 |
-
@st.cache_resource
|
35 |
-
def get_metaphor_client_wrapper() -> metaphor.Metaphor:
|
36 |
-
"""
|
37 |
-
Create a Metaphor client for semantic Web search.
|
38 |
-
|
39 |
-
:return: Metaphor instance.
|
40 |
-
"""
|
41 |
-
|
42 |
-
return metaphor.Metaphor(api_key=GlobalConfig.METAPHOR_API_KEY)
|
43 |
-
|
44 |
-
|
45 |
-
@st.cache_data
|
46 |
-
def get_web_search_results_wrapper(text: str) -> List[Tuple[str, str]]:
|
47 |
-
"""
|
48 |
-
Fetch and cache the Web search results on a given topic.
|
49 |
-
|
50 |
-
:param text: The topic.
|
51 |
-
:return: A list of (title, link) tuples.
|
52 |
-
"""
|
53 |
-
|
54 |
-
results = []
|
55 |
-
search_results = get_metaphor_client_wrapper().search(
|
56 |
-
text,
|
57 |
-
use_autoprompt=True,
|
58 |
-
num_results=5
|
59 |
-
)
|
60 |
-
|
61 |
-
for a_result in search_results.results:
|
62 |
-
results.append((a_result.title, a_result.url))
|
63 |
-
|
64 |
-
return results
|
65 |
-
|
66 |
-
|
67 |
-
def build_ui():
|
68 |
-
"""
|
69 |
-
Display the input elements for content generation. Only covers the first step.
|
70 |
-
"""
|
71 |
-
|
72 |
-
# get_disk_used_percentage()
|
73 |
-
|
74 |
-
st.title(APP_TEXT['app_name'])
|
75 |
-
st.subheader(APP_TEXT['caption'])
|
76 |
-
st.markdown(
|
77 |
-
'Powered by'
|
78 |
-
' [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).'
|
79 |
-
)
|
80 |
-
st.markdown(
|
81 |
-
'*If the JSON is generated or parsed incorrectly, try again later by making minor changes'
|
82 |
-
' to the input text.*'
|
83 |
-
)
|
84 |
-
|
85 |
-
with st.form('my_form'):
|
86 |
-
# Topic input
|
87 |
-
try:
|
88 |
-
with open(GlobalConfig.PRELOAD_DATA_FILE, 'r', encoding='utf-8') as in_file:
|
89 |
-
preload_data = json5.loads(in_file.read())
|
90 |
-
except (FileExistsError, FileNotFoundError):
|
91 |
-
preload_data = {'topic': '', 'audience': ''}
|
92 |
-
|
93 |
-
topic = st.text_area(
|
94 |
-
APP_TEXT['input_labels'][0],
|
95 |
-
value=preload_data['topic']
|
96 |
-
)
|
97 |
-
|
98 |
-
texts = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys())
|
99 |
-
captions = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in texts]
|
100 |
-
|
101 |
-
pptx_template = st.radio(
|
102 |
-
'Select a presentation template:',
|
103 |
-
texts,
|
104 |
-
captions=captions,
|
105 |
-
horizontal=True
|
106 |
-
)
|
107 |
-
|
108 |
-
st.divider()
|
109 |
-
submit = st.form_submit_button('Generate slide deck')
|
110 |
-
|
111 |
-
if submit:
|
112 |
-
# st.write(f'Clicked {time.time()}')
|
113 |
-
st.session_state.submitted = True
|
114 |
-
|
115 |
-
# https://github.com/streamlit/streamlit/issues/3832#issuecomment-1138994421
|
116 |
-
if 'submitted' in st.session_state:
|
117 |
-
progress_text = 'Generating the slides...give it a moment'
|
118 |
-
progress_bar = st.progress(0, text=progress_text)
|
119 |
-
|
120 |
-
topic_txt = topic.strip()
|
121 |
-
generate_presentation(topic_txt, pptx_template, progress_bar)
|
122 |
-
|
123 |
-
st.divider()
|
124 |
-
st.text(APP_TEXT['tos'])
|
125 |
-
st.text(APP_TEXT['tos2'])
|
126 |
-
|
127 |
-
st.markdown(
|
128 |
-
'![Visitors]'
|
129 |
-
'(https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fbarunsaha%2Fslide-deck-ai&countColor=%23263759)'
|
130 |
-
)
|
131 |
-
|
132 |
-
|
133 |
-
def generate_presentation(topic: str, pptx_template: str, progress_bar):
|
134 |
-
"""
|
135 |
-
Process the inputs to generate the slides.
|
136 |
-
|
137 |
-
:param topic: The presentation topic based on which contents are to be generated.
|
138 |
-
:param pptx_template: The PowerPoint template name to be used.
|
139 |
-
:param progress_bar: Progress bar from the page.
|
140 |
-
"""
|
141 |
-
|
142 |
-
topic_length = len(topic)
|
143 |
-
logger.debug('Input length:: topic: %s', topic_length)
|
144 |
-
|
145 |
-
if topic_length >= 10:
|
146 |
-
logger.debug('Topic: %s', topic)
|
147 |
-
target_length = min(topic_length, GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH)
|
148 |
-
|
149 |
-
try:
|
150 |
-
# Step 1: Generate the contents in JSON format using an LLM
|
151 |
-
json_str = process_slides_contents(topic[:target_length], progress_bar)
|
152 |
-
logger.debug('Truncated topic: %s', topic[:target_length])
|
153 |
-
logger.debug('Length of JSON: %d', len(json_str))
|
154 |
-
|
155 |
-
# Step 2: Generate the slide deck based on the template specified
|
156 |
-
if len(json_str) > 0:
|
157 |
-
st.info(
|
158 |
-
'Tip: The generated content doesn\'t look so great?'
|
159 |
-
' Need alternatives? Just change your description text and try again.',
|
160 |
-
icon="💡️"
|
161 |
-
)
|
162 |
-
else:
|
163 |
-
st.error(
|
164 |
-
'Unfortunately, JSON generation failed, so the next steps would lead'
|
165 |
-
' to nowhere. Try again or come back later.'
|
166 |
-
)
|
167 |
-
return
|
168 |
-
|
169 |
-
all_headers = generate_slide_deck(json_str, pptx_template, progress_bar)
|
170 |
-
|
171 |
-
# Step 3: Bonus stuff: Web references and AI art
|
172 |
-
show_bonus_stuff(all_headers)
|
173 |
-
|
174 |
-
except ValueError as ve:
|
175 |
-
st.error(f'Unfortunately, an error occurred: {ve}! '
|
176 |
-
f'Please change the text, try again later, or report it, sharing your inputs.')
|
177 |
-
|
178 |
-
else:
|
179 |
-
st.error('Not enough information provided! Please be little more descriptive :)')
|
180 |
-
|
181 |
-
|
182 |
-
def process_slides_contents(text: str, progress_bar: st.progress) -> str:
|
183 |
-
"""
|
184 |
-
Convert given text into structured data and display. Update the UI.
|
185 |
-
|
186 |
-
:param text: The topic description for the presentation.
|
187 |
-
:param progress_bar: Progress bar for this step.
|
188 |
-
:return: The contents as a JSON-formatted string.
|
189 |
-
"""
|
190 |
-
|
191 |
-
json_str = ''
|
192 |
-
|
193 |
-
try:
|
194 |
-
logger.info('Calling LLM for content generation on the topic: %s', text)
|
195 |
-
json_str = get_contents_wrapper(text)
|
196 |
-
except Exception as ex:
|
197 |
-
st.error(
|
198 |
-
f'An exception occurred while trying to convert to JSON. It could be because of heavy'
|
199 |
-
f' traffic or something else. Try doing it again or try again later.'
|
200 |
-
f'\nError message: {ex}'
|
201 |
-
)
|
202 |
-
|
203 |
-
progress_bar.progress(50, text='Contents generated')
|
204 |
-
|
205 |
-
with st.expander('The generated contents (in JSON format)'):
|
206 |
-
st.code(json_str, language='json')
|
207 |
-
|
208 |
-
return json_str
|
209 |
-
|
210 |
-
|
211 |
-
def generate_slide_deck(json_str: str, pptx_template: str, progress_bar) -> List:
|
212 |
-
"""
|
213 |
-
Create a slide deck.
|
214 |
-
|
215 |
-
:param json_str: The contents in JSON format.
|
216 |
-
:param pptx_template: The PPTX template name.
|
217 |
-
:param progress_bar: Progress bar.
|
218 |
-
:return: A list of all slide headers and the title.
|
219 |
-
"""
|
220 |
-
|
221 |
-
progress_text = 'Creating the slide deck...give it a moment'
|
222 |
-
progress_bar.progress(75, text=progress_text)
|
223 |
-
|
224 |
-
# # Get a unique name for the file to save -- use the session ID
|
225 |
-
# ctx = st_sr.get_script_run_ctx()
|
226 |
-
# session_id = ctx.session_id
|
227 |
-
# timestamp = time.time()
|
228 |
-
# output_file_name = f'{session_id}_{timestamp}.pptx'
|
229 |
-
|
230 |
-
temp = tempfile.NamedTemporaryFile(delete=False, suffix='.pptx')
|
231 |
-
path = pathlib.Path(temp.name)
|
232 |
-
|
233 |
-
logger.info('Creating PPTX file...')
|
234 |
-
all_headers = pptx_helper.generate_powerpoint_presentation(
|
235 |
-
json_str,
|
236 |
-
slides_template=pptx_template,
|
237 |
-
output_file_path=path
|
238 |
-
)
|
239 |
-
progress_bar.progress(100, text='Done!')
|
240 |
-
|
241 |
-
with open(path, 'rb') as f:
|
242 |
-
st.download_button('Download PPTX file', f, file_name='Presentation.pptx')
|
243 |
-
|
244 |
-
if temp:
|
245 |
-
temp.close()
|
246 |
-
|
247 |
-
return all_headers
|
248 |
-
|
249 |
-
|
250 |
-
def show_bonus_stuff(ppt_headers: List[str]):
|
251 |
-
"""
|
252 |
-
Show bonus stuff for the presentation.
|
253 |
-
|
254 |
-
:param ppt_headers: A list of the slide headings.
|
255 |
-
"""
|
256 |
-
|
257 |
-
# Use the presentation title and the slide headers to find relevant info online
|
258 |
-
logger.info('Calling Metaphor search...')
|
259 |
-
ppt_text = ' '.join(ppt_headers)
|
260 |
-
search_results = get_web_search_results_wrapper(ppt_text)
|
261 |
-
md_text_items = []
|
262 |
-
|
263 |
-
for (title, link) in search_results:
|
264 |
-
md_text_items.append(f'[{title}]({link})')
|
265 |
-
|
266 |
-
with st.expander('Related Web references'):
|
267 |
-
st.markdown('\n\n'.join(md_text_items))
|
268 |
-
|
269 |
-
logger.info('Done!')
|
270 |
-
|
271 |
-
# # Avoid image generation. It costs time and an API call, so just limit to the text generation.
|
272 |
-
# with st.expander('AI-generated image on the presentation topic'):
|
273 |
-
# logger.info('Calling SDXL for image generation...')
|
274 |
-
# # img_empty.write('')
|
275 |
-
# # img_text.write(APP_TEXT['image_info'])
|
276 |
-
# image = get_ai_image_wrapper(ppt_text)
|
277 |
-
#
|
278 |
-
# if len(image) > 0:
|
279 |
-
# image = base64.b64decode(image)
|
280 |
-
# st.image(image, caption=ppt_text)
|
281 |
-
# st.info('Tip: Right-click on the image to save it.', icon="💡️")
|
282 |
-
# logger.info('Image added')
|
283 |
-
|
284 |
-
|
285 |
-
def main():
|
286 |
-
"""
|
287 |
-
Trigger application run.
|
288 |
-
"""
|
289 |
-
|
290 |
-
build_ui()
|
291 |
-
|
292 |
-
|
293 |
-
if __name__ == '__main__':
|
294 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|