Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pydub import AudioSegment
|
3 |
+
import edge_tts
|
4 |
+
import os
|
5 |
+
import asyncio
|
6 |
+
import uuid
|
7 |
+
import re
|
8 |
+
|
9 |
+
# Function to get the length of an audio file in milliseconds
|
10 |
+
def get_audio_length(audio_file):
|
11 |
+
audio = AudioSegment.from_file(audio_file)
|
12 |
+
return len(audio) / 1000 # Return in seconds for compatibility
|
13 |
+
|
14 |
+
# Function to format time for SRT in milliseconds
|
15 |
+
def format_time_ms(milliseconds):
|
16 |
+
seconds, ms = divmod(int(milliseconds), 1000)
|
17 |
+
mins, secs = divmod(seconds, 60)
|
18 |
+
hrs, mins = divmod(mins, 60)
|
19 |
+
return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}"
|
20 |
+
|
21 |
+
# Function to split text into segments based on punctuation, ensuring no word is split
|
22 |
+
def split_text_into_segments(text):
|
23 |
+
segments = []
|
24 |
+
raw_segments = re.split(r'([.!?,])', text)
|
25 |
+
|
26 |
+
for i in range(0, len(raw_segments) - 1, 2):
|
27 |
+
sentence = raw_segments[i].strip() + raw_segments[i + 1]
|
28 |
+
words = sentence.split()
|
29 |
+
|
30 |
+
if len(words) <= 8:
|
31 |
+
segments.append(sentence.strip())
|
32 |
+
else:
|
33 |
+
chunk = ""
|
34 |
+
for word in words:
|
35 |
+
if len(chunk.split()) < 8:
|
36 |
+
chunk += " " + word
|
37 |
+
else:
|
38 |
+
segments.append(chunk.strip())
|
39 |
+
chunk = word
|
40 |
+
if chunk:
|
41 |
+
segments.append(chunk.strip())
|
42 |
+
|
43 |
+
if len(raw_segments) % 2 == 1:
|
44 |
+
remaining_text = raw_segments[-1].strip()
|
45 |
+
if remaining_text:
|
46 |
+
segments.append(remaining_text)
|
47 |
+
|
48 |
+
return segments
|
49 |
+
|
50 |
+
# Function to generate SRT with millisecond accuracy per batch
|
51 |
+
async def generate_accurate_srt(batch_text, batch_num, start_offset, pitch, rate, voice):
|
52 |
+
audio_file = f"batch_{batch_num}_audio.wav"
|
53 |
+
|
54 |
+
tts = edge_tts.Communicate(batch_text, voice, rate=rate, pitch=pitch)
|
55 |
+
await tts.save(audio_file)
|
56 |
+
|
57 |
+
actual_length = get_audio_length(audio_file) * 1000 # Convert to milliseconds
|
58 |
+
|
59 |
+
segments = split_text_into_segments(batch_text)
|
60 |
+
segment_duration = actual_length / len(segments)
|
61 |
+
start_time = start_offset
|
62 |
+
|
63 |
+
srt_content = ""
|
64 |
+
for index, segment in enumerate(segments):
|
65 |
+
end_time = start_time + segment_duration
|
66 |
+
|
67 |
+
if end_time > start_offset + actual_length:
|
68 |
+
end_time = start_offset + actual_length
|
69 |
+
|
70 |
+
srt_content += f"{index + 1 + (batch_num * 100)}\n"
|
71 |
+
srt_content += f"{format_time_ms(start_time)} --> {format_time_ms(end_time)}\n"
|
72 |
+
srt_content += segment + "\n\n"
|
73 |
+
|
74 |
+
start_time = end_time
|
75 |
+
|
76 |
+
return srt_content, audio_file, start_time
|
77 |
+
|
78 |
+
# Batch processing function with millisecond accuracy
|
79 |
+
async def batch_process_srt_and_audio(script_text, pitch, rate, voice, progress=gr.Progress()):
|
80 |
+
batches = [script_text[i:i + 500] for i in range(0, len(script_text), 500)]
|
81 |
+
all_srt_content = ""
|
82 |
+
combined_audio = AudioSegment.empty()
|
83 |
+
start_offset = 0.0
|
84 |
+
|
85 |
+
for batch_num, batch_text in enumerate(batches):
|
86 |
+
srt_content, audio_file, end_offset = await generate_accurate_srt(batch_text, batch_num, start_offset, pitch, rate, voice)
|
87 |
+
all_srt_content += srt_content
|
88 |
+
|
89 |
+
batch_audio = AudioSegment.from_file(audio_file)
|
90 |
+
combined_audio += batch_audio
|
91 |
+
start_offset = end_offset
|
92 |
+
|
93 |
+
os.remove(audio_file)
|
94 |
+
progress((batch_num + 1) / len(batches))
|
95 |
+
|
96 |
+
total_audio_length = combined_audio.duration_seconds
|
97 |
+
validated_srt_content = ""
|
98 |
+
for line in all_srt_content.strip().splitlines():
|
99 |
+
if '-->' in line:
|
100 |
+
start_str, end_str = line.split(' --> ')
|
101 |
+
start_time = sum(x * float(t) for x, t in zip([3600, 60, 1, 0.001], start_str.replace(',', ':').split(':')))
|
102 |
+
end_time = sum(x * float(t) for x, t in zip([3600, 60, 1, 0.001], end_str.replace(',', ':').split(':')))
|
103 |
+
if end_time > total_audio_length:
|
104 |
+
end_time = total_audio_length
|
105 |
+
line = f"{format_time_ms(start_time * 1000)} --> {format_time_ms(end_time * 1000)}"
|
106 |
+
validated_srt_content += line + "\n"
|
107 |
+
|
108 |
+
unique_id = uuid.uuid4()
|
109 |
+
final_audio_path = f"final_audio_{unique_id}.mp3"
|
110 |
+
final_srt_path = f"final_subtitles_{unique_id}.srt"
|
111 |
+
|
112 |
+
combined_audio.export(final_audio_path, format="mp3", bitrate="320k")
|
113 |
+
|
114 |
+
with open(final_srt_path, "w") as srt_file:
|
115 |
+
srt_file.write(validated_srt_content)
|
116 |
+
|
117 |
+
return final_srt_path, final_audio_path
|
118 |
+
|
119 |
+
# Gradio interface function
|
120 |
+
async def process_script(script_text, pitch, rate, voice):
|
121 |
+
pitch_str = f"{pitch}Hz" if pitch != 0 else "-1Hz"
|
122 |
+
formatted_rate = f"{'+' if rate > 1 else ''}{int(rate)}%"
|
123 |
+
srt_path, audio_path = await batch_process_srt_and_audio(script_text, pitch_str, formatted_rate, voice_options[voice])
|
124 |
+
return srt_path, audio_path, audio_path
|
125 |
+
|
126 |
+
# Gradio interface setup
|
127 |
+
voice_options = {
|
128 |
+
"Andrew Male": "en-US-AndrewNeural",
|
129 |
+
"Jenny Female": "en-US-JennyNeural",
|
130 |
+
"Guy Male": "en-US-GuyNeural",
|
131 |
+
"Ana Female": "en-US-AnaNeural",
|
132 |
+
"Aria Female": "en-US-AriaNeural",
|
133 |
+
"Brian Male": "en-US-BrianNeural",
|
134 |
+
"Christopher Male": "en-US-ChristopherNeural",
|
135 |
+
"Eric Male": "en-US-EricNeural",
|
136 |
+
"Michelle Male": "en-US-MichelleNeural",
|
137 |
+
"Roger Male": "en-US-RogerNeural",
|
138 |
+
"Natasha Female": "en-AU-NatashaNeural",
|
139 |
+
"William Male": "en-AU-WilliamNeural",
|
140 |
+
"Clara Female": "en-CA-ClaraNeural",
|
141 |
+
"Liam Female ": "en-CA-LiamNeural",
|
142 |
+
"Libby Female": "en-GB-LibbyNeural",
|
143 |
+
"Maisie": "en-GB-MaisieNeural",
|
144 |
+
"Ryan": "en-GB-RyanNeural",
|
145 |
+
"Sonia": "en-GB-SoniaNeural",
|
146 |
+
"Thomas": "en-GB-ThomasNeural",
|
147 |
+
"Sam": "en-HK-SamNeural",
|
148 |
+
"Yan": "en-HK-YanNeural",
|
149 |
+
"Connor": "en-IE-ConnorNeural",
|
150 |
+
"Emily": "en-IE-EmilyNeural",
|
151 |
+
"Neerja": "en-IN-NeerjaNeural",
|
152 |
+
"Prabhat": "en-IN-PrabhatNeural",
|
153 |
+
"Asilia": "en-KE-AsiliaNeural",
|
154 |
+
"Chilemba": "en-KE-ChilembaNeural",
|
155 |
+
"Abeo": "en-NG-AbeoNeural",
|
156 |
+
"Ezinne": "en-NG-EzinneNeural",
|
157 |
+
"Mitchell": "en-NZ-MitchellNeural",
|
158 |
+
"James": "en-PH-JamesNeural",
|
159 |
+
"Rosa": "en-PH-RosaNeural",
|
160 |
+
"Luna": "en-SG-LunaNeural",
|
161 |
+
"Wayne": "en-SG-WayneNeural",
|
162 |
+
"Elimu": "en-TZ-ElimuNeural",
|
163 |
+
"Imani": "en-TZ-ImaniNeural",
|
164 |
+
"Leah": "en-ZA-LeahNeural",
|
165 |
+
"Luke": "en-ZA-LukeNeural"
|
166 |
+
# Add other voices here...
|
167 |
+
}
|
168 |
+
|
169 |
+
app = gr.Interface(
|
170 |
+
fn=process_script,
|
171 |
+
inputs=[
|
172 |
+
gr.Textbox(label="Enter Script Text", lines=10),
|
173 |
+
gr.Slider(label="Pitch Adjustment (Hz)", minimum=-20, maximum=20, value=0, step=1),
|
174 |
+
gr.Slider(label="Rate Adjustment (%)", minimum=-50, maximum=50, value=-1, step=1),
|
175 |
+
gr.Dropdown(label="Select Voice", choices=list(voice_options.keys()), value="Andrew Male"),
|
176 |
+
],
|
177 |
+
outputs=[
|
178 |
+
gr.File(label="Download SRT File"),
|
179 |
+
gr.File(label="Download Audio File"),
|
180 |
+
gr.Audio(label="Audio Playback")
|
181 |
+
],
|
182 |
+
title="WritooAI Pro Text-to-Speech with Subtitle",
|
183 |
+
description="Convert your script into Audio with Auto generated Subtitles.",
|
184 |
+
theme="compact",
|
185 |
+
)
|
186 |
+
|
187 |
+
app.launch()
|