File size: 6,709 Bytes
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103a11
2820ed5
 
 
2103a11
 
 
 
 
 
 
8142abe
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
 
 
 
 
 
 
 
 
 
 
2103a11
3c478c7
2103a11
 
 
 
 
 
 
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ce742
 
 
 
 
 
3c478c7
 
 
 
 
 
 
 
 
7393cd1
7f9264a
 
 
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ce742
3c478c7
7393cd1
 
3c478c7
 
 
 
e5ce742
 
 
7393cd1
 
 
e5ce742
 
3c478c7
e5ce742
3c478c7
e5ce742
3c478c7
e5ce742
3c478c7
 
 
 
2103a11
103916a
3c478c7
f67c6da
8899d2c
 
f67c6da
2208294
40567ae
4d91577
40567ae
2208294
40567ae
 
c72fcf9
8899d2c
 
c72fcf9
40567ae
c72fcf9
 
 
40567ae
3c478c7
1e32f27
3c478c7
401b6e4
2c2b21c
74d31de
 
7a48d5e
401b6e4
74d31de
 
401b6e4
 
7393cd1
20a0793
5b0c5d4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import json
import requests

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler

from tqdm.contrib.concurrent import thread_map

from utils import make_clickable_model, make_clickable_user

DATASET_REPO_URL = (
    "https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")

block = gr.Blocks()
api = HfApi(token=HF_TOKEN)


# .tab-buttons button {
#     font-size: 20px;
# }

custom_css = """
/* Full width space */
.gradio-container {
  max-width: 95%!important;
}
"""

hivex_envs = [
    {
        "title": "Wind Farm Control",
        "hivex_env": "hivex-wind-farm-control",
        "task_count": 2,
    },
    {
        "title": "Wildfire Resource Management",
        "hivex_env": "hivex-wildfire-resource-management",
        "task_count": 3,
    },
    {
        "title": "Drone-Based Reforestation",
        "hivex_env": "hivex-drone-based-reforestation",
        "task_count": 7,
    },
    {
        "title": "Ocean Plastic Collection",
        "hivex_env": "hivex-ocean-plastic-collection",
        "task_count": 4,
    },
    {
        "title": "Aerial Wildfire Suppression",
        "hivex_env": "hivex-aerial-wildfire-suppression",
        "task_count": 9,
    },
]


def restart():
    print("RESTART")
    api.restart_space(repo_id="hivex-research/hivex-leaderboard")


def download_leaderboard_dataset():
    path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
    return path
    

def get_total_models():
    total_models = 0
    for hivex_env in hivex_envs:
        model_ids = get_model_ids(hivex_env["hivex_env"])
        total_models += len(model_ids)
    return total_models
    

def get_model_ids(hivex_env):
    api = HfApi()
    models = api.list_models(filter=hivex_env)
    model_ids = [x.modelId for x in models]
    return model_ids


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


def update_leaderboard_dataset_parallel(hivex_env, path):
    # Get model ids associated with hivex_env
    model_ids = get_model_ids(hivex_env)

    def process_model(model_id):
        meta = get_metadata(model_id)
        # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
        if meta is None:
            return None
        user_id = model_id.split("/")[0]
        row = {}
        row["User"] = user_id
        row["Model"] = model_id
        results = meta["model-index"][0]["results"][0]
        row["Task"] = results["task"]["task-id"]

        results_metrics = results["metrics"]

        for result in results_metrics:
            row[result["name"]] = float(result["value"].split("+/-")[0].strip())

        return row

    data = list(thread_map(process_model, model_ids, desc="Processing models"))

    # Filter out None results (models with no metadata)
    data = [row for row in data if row is not None]

    # ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    ranked_dataframe = pd.DataFrame.from_records(data)
    
    new_history = ranked_dataframe
    file_path = path + "/" + hivex_env + ".csv"
    new_history.to_csv(file_path, index=False)

    return ranked_dataframe


def run_update_dataset():
    path_ = download_leaderboard_dataset()
    for i in range(0, len(hivex_envs)):
        hivex_env = hivex_envs[i]
        update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)

    api.upload_folder(
        folder_path=path_,
        repo_id="hivex-research/hivex-leaderboard-data",
        repo_type="dataset",
        commit_message="Update dataset",
    )


def get_data(rl_env, task, path) -> pd.DataFrame:
    """
    Get data from rl_env, filter by the given task, and drop the Task column.
    :return: filtered data as a pandas DataFrame without the Task column
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    # Filter the data to only include rows where the "Task" column matches the given task
    filtered_data = data[data["Task"] == task]

    # Drop the "Task" column
    filtered_data = filtered_data.drop(columns=["Task"])

    # Convert User and Model columns to clickable links
    for index, row in filtered_data.iterrows():
        user_id = row["User"]
        filtered_data.loc[index, "User"] = make_clickable_user(user_id)
        model_id = row["Model"]
        filtered_data.loc[index, "Model"] = make_clickable_model(model_id)

    return filtered_data


run_update_dataset()

block = gr.Blocks(css=custom_css)
with block:
    with gr.Row(elem_id="header-row"):
        # TITLE IMAGE
        gr.HTML(
            """
            <div align="left">
              <div style="border-radius: 20px; width: 50%;">
                <img
                  src="https://huggingface.co/spaces/hivex-research/hivex-leaderboard/resolve/main/hivex_thumb_cropped.png"
                  alt="hivex header image"
                  style="width: 100%; border-radius: 20px;"
                />
              </div>
            </div>
            """
        )
    with gr.Row(elem_id="header-row"):
        gr.HTML(f"<h1>HIVEX-Leaderboard</h1>")     
    with gr.Row(elem_id="header-row"):
        gr.HTML(f"<p>Total models: {get_total_models()}</p>")
    with gr.Row(elem_id="header-row"):
        gr.HTML(f"<p>To get started, please check out <a href='https://github.com/hivex-research/hivex'>our GitHub repository</a>.</p>")

    path_ = download_leaderboard_dataset()
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    # ENVIRONMENT TABS
    with gr.Tabs() as tabs: # elem_classes="tab-buttons"
        for i in range(0, len(hivex_envs)):
            hivex_env = hivex_envs[i]
            with gr.Tab(hivex_env["title"]) as env_tabs:
                # TASK TABS
                for j in range(0, hivex_env["task_count"]):
                    task = "Task " + str(j + 1)
                    with gr.TabItem(f"Task {j}"):
                        with gr.Row():
                            gr_dataframe = gr.components.Dataframe(value=get_data(hivex_env["hivex_env"], j, path_), headers=["User", "Model"], datatype=["markdown", "markdown"], row_count=(100, 'fixed'))
                 

scheduler = BackgroundScheduler()
scheduler.add_job(restart, "interval", seconds=86400)
scheduler.start()

block.launch()