File size: 6,332 Bytes
3c478c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import json
import requests
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm.contrib.concurrent import thread_map
from utils import make_clickable_model, make_clickable_user
DATASET_REPO_URL = (
"https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")
block = gr.Blocks()
api = HfApi(token=HF_TOKEN)
hivex_envs = [
{
"hivex_env": "hivex-wind-farm-control",
},
{
"hivex_env": "hivex-wildfire-resource-management",
},
{
"hivex_env": "hivex-drone-based-reforestation",
},
{
"hivex_env": "hivex-ocean-plastic-collection",
},
{
"hivex_env": "hivex-aerial-wildfire-suppression",
},
]
def restart():
print("RESTART")
api.restart_space(repo_id="hivex-research/hivex-leaderboard")
def download_leaderboard_dataset():
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
return path
def get_model_ids(hivex_env):
api = HfApi()
models = api.list_models(filter=hivex_env)
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
# def parse_metrics_accuracy(meta):
# if "model-index" not in meta:
# return None
# result = meta["model-index"][0]["results"]
# metrics = result[0]["metrics"]
# accuracy = metrics[0]["value"]
# return accuracy
# def parse_rewards(accuracy):
# default_std = -1000
# default_reward = -1000
# if accuracy != None:
# accuracy = str(accuracy)
# parsed = accuracy.split("+/-")
# if len(parsed) > 1:
# mean_reward = float(parsed[0].strip())
# std_reward = float(parsed[1].strip())
# elif len(parsed) == 1: # only mean reward
# mean_reward = float(parsed[0].strip())
# std_reward = float(0)
# else:
# mean_reward = float(default_std)
# std_reward = float(default_reward)
# else:
# mean_reward = float(default_std)
# std_reward = float(default_reward)
# return mean_reward, std_reward
def rank_dataframe(dataframe):
dataframe = dataframe.sort_values(
by=["Cumulative Reward", "User", "Model"], ascending=False
)
if not "Ranking" in dataframe.columns:
dataframe.insert(0, "Ranking", [i for i in range(1, len(dataframe) + 1)])
else:
dataframe["Ranking"] = [i for i in range(1, len(dataframe) + 1)]
return dataframe
def update_leaderboard_dataset_parallel(hivex_env, path):
# Get model ids associated with hivex_env
model_ids = get_model_ids(hivex_env)
def process_model(model_id):
meta = get_metadata(model_id)
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
if meta is None:
return None
user_id = model_id.split("/")[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
# accuracy = parse_metrics_accuracy(meta)
# mean_reward, std_reward = parse_rewards(accuracy)
# mean_reward = mean_reward if not pd.isna(mean_reward) else 0
# std_reward = std_reward if not pd.isna(std_reward) else 0
# row["Results"] = mean_reward - std_reward
# row["Mean Reward"] = mean_reward
# row["Std Reward"] = std_reward
results = meta["model-index"][0]["results"][0]["metrics"]
for result in results:
row[result["name"]] = float(result["value"].split("+/-")[0].strip())
return row
data = list(thread_map(process_model, model_ids, desc="Processing models"))
# Filter out None results (models with no metadata)
data = [row for row in data if row is not None]
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
new_history = ranked_dataframe
file_path = path + "/" + hivex_env + ".csv"
new_history.to_csv(file_path, index=False)
return ranked_dataframe
def run_update_dataset():
path_ = download_leaderboard_dataset()
for i in range(0, len(hivex_envs)):
hivex_env = hivex_envs[i]
update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)
api.upload_folder(
folder_path=path_,
repo_id="hivex-research/hivex-leaderboard-data",
repo_type="dataset",
commit_message="Update dataset",
)
def get_data(rl_env, path) -> pd.DataFrame:
"""
Get data from rl_env
:return: data as a pandas DataFrame
"""
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
for index, row in data.iterrows():
user_id = row["User"]
data.loc[index, "User"] = make_clickable_user(user_id)
model_id = row["Model"]
data.loc[index, "Model"] = make_clickable_model(model_id)
return data
def get_data_no_html(rl_env, path) -> pd.DataFrame:
"""
Get data from rl_env
:return: data as a pandas DataFrame
"""
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
return data
run_update_dataset()
main_block = gr.Blocks()
with main_block:
with gr.Row(elem_id="header-row"):
# TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>"
gr.HTML("<h1>Leaderboard</h1>")
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.Tab("π Hard Set") as hard_tabs:
with gr.TabItem(
"π
Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"
):
gr.DataTable(
get_data(
"hivex-wind-farm-control", "datasets/hivex-leaderboard-data"
),
elem_id="hard_benchmark_table",
elem_classes="table",
)
|