File size: 6,332 Bytes
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import json
import requests

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler

from tqdm.contrib.concurrent import thread_map

from utils import make_clickable_model, make_clickable_user

DATASET_REPO_URL = (
    "https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")

block = gr.Blocks()
api = HfApi(token=HF_TOKEN)

hivex_envs = [
    {
        "hivex_env": "hivex-wind-farm-control",
    },
    {
        "hivex_env": "hivex-wildfire-resource-management",
    },
    {
        "hivex_env": "hivex-drone-based-reforestation",
    },
    {
        "hivex_env": "hivex-ocean-plastic-collection",
    },
    {
        "hivex_env": "hivex-aerial-wildfire-suppression",
    },
]


def restart():
    print("RESTART")
    api.restart_space(repo_id="hivex-research/hivex-leaderboard")


def download_leaderboard_dataset():
    path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
    return path


def get_model_ids(hivex_env):
    api = HfApi()
    models = api.list_models(filter=hivex_env)
    model_ids = [x.modelId for x in models]
    return model_ids


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


# def parse_metrics_accuracy(meta):
#     if "model-index" not in meta:
#         return None
#     result = meta["model-index"][0]["results"]
#     metrics = result[0]["metrics"]
#     accuracy = metrics[0]["value"]
#     return accuracy


# def parse_rewards(accuracy):
#     default_std = -1000
#     default_reward = -1000
#     if accuracy != None:
#         accuracy = str(accuracy)
#         parsed = accuracy.split("+/-")
#         if len(parsed) > 1:
#             mean_reward = float(parsed[0].strip())
#             std_reward = float(parsed[1].strip())
#         elif len(parsed) == 1:  # only mean reward
#             mean_reward = float(parsed[0].strip())
#             std_reward = float(0)
#         else:
#             mean_reward = float(default_std)
#             std_reward = float(default_reward)

#     else:
#         mean_reward = float(default_std)
#         std_reward = float(default_reward)
#     return mean_reward, std_reward


def rank_dataframe(dataframe):
    dataframe = dataframe.sort_values(
        by=["Cumulative Reward", "User", "Model"], ascending=False
    )
    if not "Ranking" in dataframe.columns:
        dataframe.insert(0, "Ranking", [i for i in range(1, len(dataframe) + 1)])
    else:
        dataframe["Ranking"] = [i for i in range(1, len(dataframe) + 1)]
    return dataframe


def update_leaderboard_dataset_parallel(hivex_env, path):
    # Get model ids associated with hivex_env
    model_ids = get_model_ids(hivex_env)

    def process_model(model_id):
        meta = get_metadata(model_id)
        # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
        if meta is None:
            return None
        user_id = model_id.split("/")[0]
        row = {}
        row["User"] = user_id
        row["Model"] = model_id
        # accuracy = parse_metrics_accuracy(meta)
        # mean_reward, std_reward = parse_rewards(accuracy)
        # mean_reward = mean_reward if not pd.isna(mean_reward) else 0
        # std_reward = std_reward if not pd.isna(std_reward) else 0
        # row["Results"] = mean_reward - std_reward
        # row["Mean Reward"] = mean_reward
        # row["Std Reward"] = std_reward
        results = meta["model-index"][0]["results"][0]["metrics"]

        for result in results:
            row[result["name"]] = float(result["value"].split("+/-")[0].strip())

        return row

    data = list(thread_map(process_model, model_ids, desc="Processing models"))

    # Filter out None results (models with no metadata)
    data = [row for row in data if row is not None]

    ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    new_history = ranked_dataframe
    file_path = path + "/" + hivex_env + ".csv"
    new_history.to_csv(file_path, index=False)

    return ranked_dataframe


def run_update_dataset():
    path_ = download_leaderboard_dataset()
    for i in range(0, len(hivex_envs)):
        hivex_env = hivex_envs[i]
        update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)

    api.upload_folder(
        folder_path=path_,
        repo_id="hivex-research/hivex-leaderboard-data",
        repo_type="dataset",
        commit_message="Update dataset",
    )


def get_data(rl_env, path) -> pd.DataFrame:
    """
    Get data from rl_env
    :return: data as a pandas DataFrame
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    for index, row in data.iterrows():
        user_id = row["User"]
        data.loc[index, "User"] = make_clickable_user(user_id)
        model_id = row["Model"]
        data.loc[index, "Model"] = make_clickable_model(model_id)

    return data


def get_data_no_html(rl_env, path) -> pd.DataFrame:
    """
    Get data from rl_env
    :return: data as a pandas DataFrame
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    return data


run_update_dataset()

main_block = gr.Blocks()
with main_block:
    with gr.Row(elem_id="header-row"):
        # TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>"
        gr.HTML("<h1>Leaderboard</h1>")

    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.Tab("πŸ’Ž Hard Set") as hard_tabs:
            with gr.TabItem(
                "πŸ… Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"
            ):
                gr.DataTable(
                    get_data(
                        "hivex-wind-farm-control", "datasets/hivex-leaderboard-data"
                    ),
                    elem_id="hard_benchmark_table",
                    elem_classes="table",
                )