Spaces:
Paused
Paused
File size: 7,595 Bytes
16805d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from typing import Optional
import gradio as gr
import qrcode
import torch
from diffusers import (
ControlNetModel,
EulerAncestralDiscreteScheduler,
StableDiffusionControlNetPipeline,
)
from gradio.components import Image, Radio, Slider, Textbox, Number
from PIL import Image as PilImage
from typing_extensions import Literal
def main():
device = (
'cuda' if torch.cuda.is_available()
else 'mps' if torch.backends.mps.is_available()
else 'cpu'
)
controlnet_tile = ControlNetModel.from_pretrained(
"lllyasviel/control_v11f1e_sd15_tile",
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=False,
cache_dir="./cache"
).to(device)
controlnet_brightness = ControlNetModel.from_pretrained(
"ioclab/control_v1p_sd15_brightness",
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
cache_dir="./cache"
).to(device)
def make_pipe(hf_repo: str, device: str) -> StableDiffusionControlNetPipeline:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
hf_repo,
controlnet=[controlnet_tile, controlnet_brightness],
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
cache_dir="./cache",
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
return pipe.to(device)
pipes = {
"DreamShaper": make_pipe("Lykon/DreamShaper", device),
# "DreamShaper": make_pipe("Lykon/DreamShaper", "cpu"),
# "Realistic Vision V1.4": make_pipe("SG161222/Realistic_Vision_V1.4", "cpu"),
# "OpenJourney": make_pipe("prompthero/openjourney", "cpu"),
# "Anything V3": make_pipe("Linaqruf/anything-v3.0", "cpu"),
}
def move_pipe(hf_repo: str):
for pipe_name, pipe in pipes.items():
if pipe_name != hf_repo:
pipe.to("cpu")
return pipes[hf_repo].to(device)
def predict(
model: Literal[
"DreamShaper",
# "Realistic Vision V1.4",
# "OpenJourney",
# "Anything V3"
],
qrcode_data: str,
prompt: str,
negative_prompt: Optional[str] = None,
num_inference_steps: int = 100,
guidance_scale: int = 9,
controlnet_conditioning_tile: float = 0.25,
controlnet_conditioning_brightness: float = 0.45,
seed: int = 1331,
) -> PilImage:
generator = torch.Generator(device).manual_seed(seed)
if model == "DreamShaper":
pipe = pipes["DreamShaper"]
# pipe = move_pipe("DreamShaper Vision V1.4")
# elif model == "Realistic Vision V1.4":
# pipe = move_pipe("Realistic Vision V1.4")
# elif model == "OpenJourney":
# pipe = move_pipe("OpenJourney")
# elif model == "Anything V3":
# pipe = move_pipe("Anything V3")
qr = qrcode.QRCode(
error_correction=qrcode.constants.ERROR_CORRECT_H,
box_size=11,
border=9,
)
qr.add_data(qrcode_data)
qr.make(fit=True)
qrcode_image = qr.make_image(
fill_color="black",
back_color="white"
).convert("RGB")
qrcode_image = qrcode_image.resize((512, 512), PilImage.LANCZOS)
image = pipe(
prompt,
[qrcode_image, qrcode_image],
num_inference_steps=num_inference_steps,
generator=generator,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=[
controlnet_conditioning_tile,
controlnet_conditioning_brightness
]
).images[0]
return image
ui = gr.Interface(
fn=predict,
inputs=[
Radio(
value="DreamShaper",
label="Model",
choices=[
"DreamShaper",
# "Realistic Vision V1.4",
# "OpenJourney",
# "Anything V3"
],
),
Textbox(
value="https://twitter.com/JulienBlanchon",
label="QR Code Data",
),
Textbox(
value="Japanese ramen with chopsticks, egg and steam, ultra detailed 8k",
label="Prompt",
),
Textbox(
value="logo, watermark, signature, text, BadDream, UnrealisticDream",
label="Negative Prompt",
optional=True
),
Slider(
value=100,
label="Number of Inference Steps",
minimum=10,
maximum=400,
step=1,
),
Slider(
value=9,
label="Guidance Scale",
minimum=1,
maximum=20,
step=1,
),
Slider(
value=0.25,
label="Controlnet Conditioning Tile",
minimum=0.0,
maximum=1.0,
step=0.05,
),
Slider(
value=0.45,
label="Controlnet Conditioning Brightness",
minimum=0.0,
maximum=1.0,
step=0.05,
),
Number(
value=1,
label="Seed",
precision=0,
),
],
outputs=Image(
label="Generated Image",
type="pil",
),
examples=[
[
"DreamShaper",
"https://twitter.com/JulienBlanchon",
"rock, mountain",
"",
100,
9,
0.25,
0.45,
1,
],
[
"DreamShaper",
"https://twitter.com/JulienBlanchon",
"Japanese ramen with chopsticks, egg and steam, ultra detailed 8k",
"logo, watermark, signature, text, BadDream, UnrealisticDream",
100,
9,
0.25,
0.45,
1,
],
# [
# "Anything V3",
# "https://twitter.com/JulienBlanchon",
# "Japanese ramen with chopsticks, egg and steam, ultra detailed 8k",
# "logo, watermark, signature, text, BadDream, UnrealisticDream",
# 100,
# 9,
# 0.25,
# 0.60,
# 1,
# ],
[
"DreamShaper",
"https://twitter.com/JulienBlanchon",
"processor, chipset, electricity, black and white board",
"logo, watermark, signature, text, BadDream, UnrealisticDream",
300,
9,
0.50,
0.30,
1,
],
],
cache_examples=True,
title="Stable Diffusion QR Code Controlnet",
description="Generate QR Code with Stable Diffusion and Controlnet",
allow_flagging="never",
max_batch_size=1,
)
ui.queue(concurrency_count=10).launch()
if __name__ == "__main__":
main() |