File size: 1,879 Bytes
63e1dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
diff --git a/coglm_strategy.py b/coglm_strategy.py
index d485715..a9eab3b 100644
--- a/coglm_strategy.py
+++ b/coglm_strategy.py
@@ -8,6 +8,7 @@
 
 # here put the import lib
 import os
+import pathlib
 import sys
 import math
 import random
@@ -58,7 +59,8 @@ class CoglmStrategy:
         self._is_done = False
         self.outlier_count_down = torch.zeros(16) 
         self.vis_list = [[]for i in range(16)]
-        self.cluster_labels = torch.tensor(np.load('cluster_label2.npy'), device='cuda', dtype=torch.long)
+        cluster_label_path = pathlib.Path(__file__).parent / 'cluster_label2.npy'
+        self.cluster_labels = torch.tensor(np.load(cluster_label_path), device='cuda', dtype=torch.long)
         self.start_pos = -1
         self.white_cluster = []
         # self.fout = open('tmp.txt', 'w')
@@ -98,4 +100,4 @@ class CoglmStrategy:
 
     def finalize(self, tokens, mems):
         self._is_done = False
-        return tokens, mems
\ No newline at end of file
+        return tokens, mems
diff --git a/sr_pipeline/dsr_sampling.py b/sr_pipeline/dsr_sampling.py
index 5b8dded..07e97fd 100644
--- a/sr_pipeline/dsr_sampling.py
+++ b/sr_pipeline/dsr_sampling.py
@@ -8,6 +8,7 @@
 
 # here put the import lib
 import os
+import pathlib
 import sys
 import math
 import random
@@ -28,7 +29,8 @@ class IterativeEntfilterStrategy:
         self.invalid_slices = invalid_slices
         self.temperature = temperature
         self.topk = topk        
-        self.cluster_labels = torch.tensor(np.load('cluster_label2.npy'), device='cuda', dtype=torch.long)
+        cluster_label_path = pathlib.Path(__file__).parents[1] / 'cluster_label2.npy'
+        self.cluster_labels = torch.tensor(np.load(cluster_label_path), device='cuda', dtype=torch.long)
 
 
     def forward(self, logits_, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):