File size: 9,560 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) 2022 NVIDIA CORPORATION.
#   Licensed under the MIT license.

# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
#   LICENSE is in incl_licenses directory.

import torch
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations

from mmaudio.ext.bigvgan import activations
from mmaudio.ext.bigvgan.alias_free_torch import *
from mmaudio.ext.bigvgan.utils import get_padding, init_weights

LRELU_SLOPE = 0.1


class AMPBlock1(torch.nn.Module):

    def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
        super(AMPBlock1, self).__init__()
        self.h = h

        self.convs1 = nn.ModuleList([
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=dilation[0],
                       padding=get_padding(kernel_size, dilation[0]))),
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=dilation[1],
                       padding=get_padding(kernel_size, dilation[1]))),
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=dilation[2],
                       padding=get_padding(kernel_size, dilation[2])))
        ])
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList([
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=1,
                       padding=get_padding(kernel_size, 1))),
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=1,
                       padding=get_padding(kernel_size, 1))),
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=1,
                       padding=get_padding(kernel_size, 1)))
        ])
        self.convs2.apply(init_weights)

        self.num_layers = len(self.convs1) + len(self.convs2)  # total number of conv layers

        if activation == 'snake':  # periodic nonlinearity with snake function and anti-aliasing
            self.activations = nn.ModuleList([
                Activation1d(
                    activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
                for _ in range(self.num_layers)
            ])
        elif activation == 'snakebeta':  # periodic nonlinearity with snakebeta function and anti-aliasing
            self.activations = nn.ModuleList([
                Activation1d(
                    activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
                for _ in range(self.num_layers)
            ])
        else:
            raise NotImplementedError(
                "activation incorrectly specified. check the config file and look for 'activation'."
            )

    def forward(self, x):
        acts1, acts2 = self.activations[::2], self.activations[1::2]
        for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
            xt = a1(x)
            xt = c1(xt)
            xt = a2(xt)
            xt = c2(xt)
            x = xt + x

        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_parametrizations(l, 'weight')
        for l in self.convs2:
            remove_parametrizations(l, 'weight')


class AMPBlock2(torch.nn.Module):

    def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
        super(AMPBlock2, self).__init__()
        self.h = h

        self.convs = nn.ModuleList([
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=dilation[0],
                       padding=get_padding(kernel_size, dilation[0]))),
            weight_norm(
                Conv1d(channels,
                       channels,
                       kernel_size,
                       1,
                       dilation=dilation[1],
                       padding=get_padding(kernel_size, dilation[1])))
        ])
        self.convs.apply(init_weights)

        self.num_layers = len(self.convs)  # total number of conv layers

        if activation == 'snake':  # periodic nonlinearity with snake function and anti-aliasing
            self.activations = nn.ModuleList([
                Activation1d(
                    activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
                for _ in range(self.num_layers)
            ])
        elif activation == 'snakebeta':  # periodic nonlinearity with snakebeta function and anti-aliasing
            self.activations = nn.ModuleList([
                Activation1d(
                    activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
                for _ in range(self.num_layers)
            ])
        else:
            raise NotImplementedError(
                "activation incorrectly specified. check the config file and look for 'activation'."
            )

    def forward(self, x):
        for c, a in zip(self.convs, self.activations):
            xt = a(x)
            xt = c(xt)
            x = xt + x

        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_parametrizations(l, 'weight')


class BigVGANVocoder(torch.nn.Module):
    # this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
    def __init__(self, h):
        super().__init__()
        self.h = h

        self.num_kernels = len(h.resblock_kernel_sizes)
        self.num_upsamples = len(h.upsample_rates)

        # pre conv
        self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))

        # define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
        resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2

        # transposed conv-based upsamplers. does not apply anti-aliasing
        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
            self.ups.append(
                nn.ModuleList([
                    weight_norm(
                        ConvTranspose1d(h.upsample_initial_channel // (2**i),
                                        h.upsample_initial_channel // (2**(i + 1)),
                                        k,
                                        u,
                                        padding=(k - u) // 2))
                ]))

        # residual blocks using anti-aliased multi-periodicity composition modules (AMP)
        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = h.upsample_initial_channel // (2**(i + 1))
            for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
                self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))

        # post conv
        if h.activation == "snake":  # periodic nonlinearity with snake function and anti-aliasing
            activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
            self.activation_post = Activation1d(activation=activation_post)
        elif h.activation == "snakebeta":  # periodic nonlinearity with snakebeta function and anti-aliasing
            activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
            self.activation_post = Activation1d(activation=activation_post)
        else:
            raise NotImplementedError(
                "activation incorrectly specified. check the config file and look for 'activation'."
            )

        self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))

        # weight initialization
        for i in range(len(self.ups)):
            self.ups[i].apply(init_weights)
        self.conv_post.apply(init_weights)

    def forward(self, x):
        # pre conv
        x = self.conv_pre(x)

        for i in range(self.num_upsamples):
            # upsampling
            for i_up in range(len(self.ups[i])):
                x = self.ups[i][i_up](x)
            # AMP blocks
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels

        # post conv
        x = self.activation_post(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        print('Removing weight norm...')
        for l in self.ups:
            for l_i in l:
                remove_parametrizations(l_i, 'weight')
        for l in self.resblocks:
            l.remove_weight_norm()
        remove_parametrizations(self.conv_pre, 'weight')
        remove_parametrizations(self.conv_post, 'weight')