File size: 5,883 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Reference: # https://github.com/bytedance/Make-An-Audio-2

import torch
import torch.nn as nn
import torchaudio
from einops import rearrange
from librosa.filters import mel as librosa_mel_fn


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10):
    return norm_fn(torch.clamp(x, min=clip_val) * C)


def spectral_normalize_torch(magnitudes, norm_fn):
    output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn)
    return output


class STFTConverter(nn.Module):

    def __init__(
        self,
        *,
        sampling_rate: float = 16_000,
        n_fft: int = 1024,
        num_mels: int = 128,
        hop_size: int = 256,
        win_size: int = 1024,
        fmin: float = 0,
        fmax: float = 8_000,
        norm_fn=torch.log,
    ):
        super().__init__()
        self.sampling_rate = sampling_rate
        self.n_fft = n_fft
        self.num_mels = num_mels
        self.hop_size = hop_size
        self.win_size = win_size
        self.fmin = fmin
        self.fmax = fmax
        self.norm_fn = norm_fn

        mel = librosa_mel_fn(sr=self.sampling_rate,
                             n_fft=self.n_fft,
                             n_mels=self.num_mels,
                             fmin=self.fmin,
                             fmax=self.fmax)
        mel_basis = torch.from_numpy(mel).float()
        hann_window = torch.hann_window(self.win_size)

        self.register_buffer('mel_basis', mel_basis)
        self.register_buffer('hann_window', hann_window)

    @property
    def device(self):
        return self.hann_window.device

    def forward(self, waveform: torch.Tensor) -> torch.Tensor:
        # input: batch_size * length
        bs = waveform.shape[0]
        waveform = waveform.clamp(min=-1., max=1.)

        spec = torch.stft(waveform,
                          self.n_fft,
                          hop_length=self.hop_size,
                          win_length=self.win_size,
                          window=self.hann_window,
                          center=True,
                          pad_mode='reflect',
                          normalized=False,
                          onesided=True,
                          return_complex=True)

        spec = torch.view_as_real(spec)
        # print('After stft', spec.shape, spec.min(), spec.max(), spec.mean())

        power = spec.pow(2).sum(-1)
        angle = torch.atan2(spec[..., 1], spec[..., 0])

        print('power', power.shape, power.min(), power.max(), power.mean())
        print('angle', angle.shape, angle.min(), angle.max(), angle.mean())

        # print('mel', self.mel_basis.shape, self.mel_basis.min(), self.mel_basis.max(),
        #       self.mel_basis.mean())

        # spec = rearrange(spec, 'b f t c -> (b c) f t')

        # spec = self.mel_transform(spec)

        # spec = torch.matmul(self.mel_basis, spec)

        # print('After mel', spec.shape, spec.min(), spec.max(), spec.mean())

        # spec = spectral_normalize_torch(spec, self.norm_fn)

        # print('After norm', spec.shape, spec.min(), spec.max(), spec.mean())

        # compute magnitude
        # magnitude = torch.sqrt((spec**2).sum(-1))
        # normalize by magnitude
        # scaled_magnitude = torch.log10(magnitude.clamp(min=1e-5)) * 10
        # spec = spec / magnitude.unsqueeze(-1) * scaled_magnitude.unsqueeze(-1)

        # power = torch.log10(power.clamp(min=1e-5)) * 10
        power = torch.log10(power.clamp(min=1e-5))

        print('After scaling', power.shape, power.min(), power.max(), power.mean())

        spec = torch.stack([power, angle], dim=-1)

        # spec = rearrange(spec, '(b c) f t -> b c f t', b=bs)
        spec = rearrange(spec, 'b f t c -> b c f t', b=bs)

        # spec[:, :, 400:] = 0

        return spec

    def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor:
        bs = spec.shape[0]

        # spec = rearrange(spec, 'b c f t -> (b c) f t')
        # print(spec.shape, self.mel_basis.shape)
        # spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution
        # spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec

        # spec = self.invmel_transform(spec)

        spec = rearrange(spec, 'b c f t -> b f t c', b=bs).contiguous()

        # spec[..., 0] = 10**(spec[..., 0] / 10)

        power = spec[..., 0]
        power = 10**power

        # print('After unscaling', spec[..., 0].shape, spec[..., 0].min(), spec[..., 0].max(),
        #       spec[..., 0].mean())

        unit_vector = torch.stack([
            torch.cos(spec[..., 1]),
            torch.sin(spec[..., 1]),
        ], dim=-1)

        spec = torch.sqrt(power) * unit_vector

        # spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous()
        spec = torch.view_as_complex(spec)

        waveform = torch.istft(
            spec,
            self.n_fft,
            length=length,
            hop_length=self.hop_size,
            win_length=self.win_size,
            window=self.hann_window,
            center=True,
            normalized=False,
            onesided=True,
            return_complex=False,
        )

        return waveform


if __name__ == '__main__':

    converter = STFTConverter(sampling_rate=16000)

    signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0]
    # resample signal at 44100 Hz
    # signal = torchaudio.transforms.Resample(16_000, 44_100)(signal)

    L = signal.shape[1]
    print('Input signal', signal.shape)
    spec = converter(signal)

    print('Final spec', spec.shape)

    signal_recon = converter.invert(spec, length=L)
    print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(),
          signal_recon.mean())

    print('MSE', torch.nn.functional.mse_loss(signal, signal_recon))
    torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000)