Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from mmaudio.ext.autoencoder.edm2_utils import (MPConv1D, mp_silu, mp_sum, normalize) | |
def nonlinearity(x): | |
# swish | |
return mp_silu(x) | |
class ResnetBlock1D(nn.Module): | |
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True): | |
super().__init__() | |
self.in_dim = in_dim | |
out_dim = in_dim if out_dim is None else out_dim | |
self.out_dim = out_dim | |
self.use_conv_shortcut = conv_shortcut | |
self.use_norm = use_norm | |
self.conv1 = MPConv1D(in_dim, out_dim, kernel_size=kernel_size) | |
self.conv2 = MPConv1D(out_dim, out_dim, kernel_size=kernel_size) | |
if self.in_dim != self.out_dim: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = MPConv1D(in_dim, out_dim, kernel_size=kernel_size) | |
else: | |
self.nin_shortcut = MPConv1D(in_dim, out_dim, kernel_size=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# pixel norm | |
if self.use_norm: | |
x = normalize(x, dim=1) | |
h = x | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
h = nonlinearity(h) | |
h = self.conv2(h) | |
if self.in_dim != self.out_dim: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return mp_sum(x, h, t=0.3) | |
class AttnBlock1D(nn.Module): | |
def __init__(self, in_channels, num_heads=1): | |
super().__init__() | |
self.in_channels = in_channels | |
self.num_heads = num_heads | |
self.qkv = MPConv1D(in_channels, in_channels * 3, kernel_size=1) | |
self.proj_out = MPConv1D(in_channels, in_channels, kernel_size=1) | |
def forward(self, x): | |
h = x | |
y = self.qkv(h) | |
y = y.reshape(y.shape[0], self.num_heads, -1, 3, y.shape[-1]) | |
q, k, v = normalize(y, dim=2).unbind(3) | |
q = rearrange(q, 'b h c l -> b h l c') | |
k = rearrange(k, 'b h c l -> b h l c') | |
v = rearrange(v, 'b h c l -> b h l c') | |
h = F.scaled_dot_product_attention(q, k, v) | |
h = rearrange(h, 'b h l c -> b (h c) l') | |
h = self.proj_out(h) | |
return mp_sum(x, h, t=0.3) | |
class Upsample1D(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = MPConv1D(in_channels, in_channels, kernel_size=3) | |
def forward(self, x): | |
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T) | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample1D(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv1 = MPConv1D(in_channels, in_channels, kernel_size=1) | |
self.conv2 = MPConv1D(in_channels, in_channels, kernel_size=1) | |
def forward(self, x): | |
if self.with_conv: | |
x = self.conv1(x) | |
x = F.avg_pool1d(x, kernel_size=2, stride=2) | |
if self.with_conv: | |
x = self.conv2(x) | |
return x | |