Spaces:
Running
on
Zero
Running
on
Zero
# Reference: # https://github.com/bytedance/Make-An-Audio-2 | |
import torch | |
import torch.nn as nn | |
from librosa.filters import mel as librosa_mel_fn | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10): | |
return norm_fn(torch.clamp(x, min=clip_val) * C) | |
def spectral_normalize_torch(magnitudes, norm_fn): | |
output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) | |
return output | |
class MelConverter(nn.Module): | |
def __init__( | |
self, | |
*, | |
sampling_rate: float = 16_000, | |
n_fft: int = 1024, | |
num_mels: int = 80, | |
hop_size: int = 256, | |
win_size: int = 1024, | |
fmin: float = 0, | |
fmax: float = 8_000, | |
norm_fn=torch.log10, | |
): | |
super().__init__() | |
self.sampling_rate = sampling_rate | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.norm_fn = norm_fn | |
mel = librosa_mel_fn(sr=self.sampling_rate, | |
n_fft=self.n_fft, | |
n_mels=self.num_mels, | |
fmin=self.fmin, | |
fmax=self.fmax) | |
mel_basis = torch.from_numpy(mel).float() | |
hann_window = torch.hann_window(self.win_size) | |
self.register_buffer('mel_basis', mel_basis) | |
self.register_buffer('hann_window', hann_window) | |
def device(self): | |
return self.mel_basis.device | |
def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor: | |
waveform = waveform.clamp(min=-1., max=1.).to(self.device) | |
waveform = torch.nn.functional.pad( | |
waveform.unsqueeze(1), | |
[int((self.n_fft - self.hop_size) / 2), | |
int((self.n_fft - self.hop_size) / 2)], | |
mode='reflect') | |
waveform = waveform.squeeze(1) | |
spec = torch.stft(waveform, | |
self.n_fft, | |
hop_length=self.hop_size, | |
win_length=self.win_size, | |
window=self.hann_window, | |
center=center, | |
pad_mode='reflect', | |
normalized=False, | |
onesided=True, | |
return_complex=True) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(self.mel_basis, spec) | |
spec = spectral_normalize_torch(spec, self.norm_fn) | |
return spec | |