# Reference: # https://github.com/bytedance/Make-An-Audio-2 import torch import torch.nn as nn import torchaudio from einops import rearrange from librosa.filters import mel as librosa_mel_fn def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10): return norm_fn(torch.clamp(x, min=clip_val) * C) def spectral_normalize_torch(magnitudes, norm_fn): output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) return output class STFTConverter(nn.Module): def __init__( self, *, sampling_rate: float = 16_000, n_fft: int = 1024, num_mels: int = 128, hop_size: int = 256, win_size: int = 1024, fmin: float = 0, fmax: float = 8_000, norm_fn=torch.log, ): super().__init__() self.sampling_rate = sampling_rate self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.norm_fn = norm_fn mel = librosa_mel_fn(sr=self.sampling_rate, n_fft=self.n_fft, n_mels=self.num_mels, fmin=self.fmin, fmax=self.fmax) mel_basis = torch.from_numpy(mel).float() hann_window = torch.hann_window(self.win_size) self.register_buffer('mel_basis', mel_basis) self.register_buffer('hann_window', hann_window) @property def device(self): return self.hann_window.device def forward(self, waveform: torch.Tensor) -> torch.Tensor: # input: batch_size * length bs = waveform.shape[0] waveform = waveform.clamp(min=-1., max=1.) spec = torch.stft(waveform, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=True, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) # print('After stft', spec.shape, spec.min(), spec.max(), spec.mean()) power = spec.pow(2).sum(-1) angle = torch.atan2(spec[..., 1], spec[..., 0]) print('power', power.shape, power.min(), power.max(), power.mean()) print('angle', angle.shape, angle.min(), angle.max(), angle.mean()) # print('mel', self.mel_basis.shape, self.mel_basis.min(), self.mel_basis.max(), # self.mel_basis.mean()) # spec = rearrange(spec, 'b f t c -> (b c) f t') # spec = self.mel_transform(spec) # spec = torch.matmul(self.mel_basis, spec) # print('After mel', spec.shape, spec.min(), spec.max(), spec.mean()) # spec = spectral_normalize_torch(spec, self.norm_fn) # print('After norm', spec.shape, spec.min(), spec.max(), spec.mean()) # compute magnitude # magnitude = torch.sqrt((spec**2).sum(-1)) # normalize by magnitude # scaled_magnitude = torch.log10(magnitude.clamp(min=1e-5)) * 10 # spec = spec / magnitude.unsqueeze(-1) * scaled_magnitude.unsqueeze(-1) # power = torch.log10(power.clamp(min=1e-5)) * 10 power = torch.log10(power.clamp(min=1e-5)) print('After scaling', power.shape, power.min(), power.max(), power.mean()) spec = torch.stack([power, angle], dim=-1) # spec = rearrange(spec, '(b c) f t -> b c f t', b=bs) spec = rearrange(spec, 'b f t c -> b c f t', b=bs) # spec[:, :, 400:] = 0 return spec def invert(self, spec: torch.Tensor, length: int) -> torch.Tensor: bs = spec.shape[0] # spec = rearrange(spec, 'b c f t -> (b c) f t') # print(spec.shape, self.mel_basis.shape) # spec = torch.linalg.lstsq(self.mel_basis.unsqueeze(0), spec).solution # spec = torch.linalg.pinv(self.mel_basis.unsqueeze(0)) @ spec # spec = self.invmel_transform(spec) spec = rearrange(spec, 'b c f t -> b f t c', b=bs).contiguous() # spec[..., 0] = 10**(spec[..., 0] / 10) power = spec[..., 0] power = 10**power # print('After unscaling', spec[..., 0].shape, spec[..., 0].min(), spec[..., 0].max(), # spec[..., 0].mean()) unit_vector = torch.stack([ torch.cos(spec[..., 1]), torch.sin(spec[..., 1]), ], dim=-1) spec = torch.sqrt(power) * unit_vector # spec = rearrange(spec, '(b c) f t -> b f t c', b=bs).contiguous() spec = torch.view_as_complex(spec) waveform = torch.istft( spec, self.n_fft, length=length, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=True, normalized=False, onesided=True, return_complex=False, ) return waveform if __name__ == '__main__': converter = STFTConverter(sampling_rate=16000) signal = torchaudio.load('./output/ZZ6GRocWW38_000090.wav')[0] # resample signal at 44100 Hz # signal = torchaudio.transforms.Resample(16_000, 44_100)(signal) L = signal.shape[1] print('Input signal', signal.shape) spec = converter(signal) print('Final spec', spec.shape) signal_recon = converter.invert(spec, length=L) print('Output signal', signal_recon.shape, signal_recon.min(), signal_recon.max(), signal_recon.mean()) print('MSE', torch.nn.functional.mse_loss(signal, signal_recon)) torchaudio.save('./output/ZZ6GRocWW38_000090_recon.wav', signal_recon, 16000)