# Reference: # https://github.com/bytedance/Make-An-Audio-2 import torch import torch.nn as nn from librosa.filters import mel as librosa_mel_fn def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, norm_fn=torch.log10): return norm_fn(torch.clamp(x, min=clip_val) * C) def spectral_normalize_torch(magnitudes, norm_fn): output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) return output class MelConverter(nn.Module): def __init__( self, *, sampling_rate: float = 16_000, n_fft: int = 1024, num_mels: int = 80, hop_size: int = 256, win_size: int = 1024, fmin: float = 0, fmax: float = 8_000, norm_fn=torch.log10, ): super().__init__() self.sampling_rate = sampling_rate self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.norm_fn = norm_fn mel = librosa_mel_fn(sr=self.sampling_rate, n_fft=self.n_fft, n_mels=self.num_mels, fmin=self.fmin, fmax=self.fmax) mel_basis = torch.from_numpy(mel).float() hann_window = torch.hann_window(self.win_size) self.register_buffer('mel_basis', mel_basis) self.register_buffer('hann_window', hann_window) @property def device(self): return self.mel_basis.device def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor: waveform = waveform.clamp(min=-1., max=1.).to(self.device) waveform = torch.nn.functional.pad( waveform.unsqueeze(1), [int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)], mode='reflect') waveform = waveform.squeeze(1) spec = torch.stft(waveform, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(self.mel_basis, spec) spec = spectral_normalize_torch(spec, self.norm_fn) return spec