Spaces:
Sleeping
Sleeping
File size: 1,378 Bytes
ed1d227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from datetime import datetime, timedelta
import pandas as pd
import streamlit as st
from mitosheet.streamlit.v1 import spreadsheet
from mitosheet.streamlit.v1.spreadsheet import _get_mito_backend
st.set_page_config(layout="wide")
@st.cache_data
def get_tesla_data():
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/tesla-stock-price.csv')
df = df.drop(0)
df['volume'] = df['volume'].astype(float)
return df
tesla_data = get_tesla_data()
new_dfs, code = spreadsheet(tesla_data)
code = code if code else "# Edit the spreadsheet above to generate code"
st.code(code)
def clear_mito_backend_cache():
_get_mito_backend.clear()
# Function to cache the last execution time - so we can clear periodically
@st.cache_resource
def get_cached_time():
# Initialize with a dictionary to store the last execution time
return {"last_executed_time": None}
def try_clear_cache():
# How often to clear the cache
CLEAR_DELTA = timedelta(hours=12)
current_time = datetime.now()
cached_time = get_cached_time()
# Check if the current time is different from the cached last execution time
if cached_time["last_executed_time"] is None or cached_time["last_executed_time"] + CLEAR_DELTA < current_time:
clear_mito_backend_cache()
cached_time["last_executed_time"] = current_time
try_clear_cache() |