File size: 9,275 Bytes
d0b5dce eec7921 d0b5dce eec7921 d0b5dce 0ad2349 eec7921 561f8a4 eec7921 561f8a4 d0b5dce eec7921 d0b5dce eec7921 33b4a3f eec7921 c10b04b eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce 0ad2349 d0b5dce 0ad2349 eec7921 d0b5dce eec7921 d0b5dce eec7921 d0b5dce eec7921 5c93746 eec7921 c10b04b eec7921 d0b5dce eec7921 d0b5dce eec7921 0ad2349 a5c85f4 0ad2349 a5c85f4 0ad2349 a5c85f4 0ad2349 a5c85f4 0ad2349 a5c85f4 0ad2349 a5c85f4 eec7921 d0b5dce eec7921 d0b5dce eec7921 5c93746 a13c03f c10b04b eec7921 d0b5dce eec7921 0ad2349 d0b5dce 0ad2349 d0b5dce 0ad2349 d0b5dce 0ad2349 d0b5dce 0ad2349 d0b5dce eec7921 5c93746 eec7921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
from typing import List
import gradio as gr
import numpy as np
import pandas as pd
_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
_METRICS = ["MCC", "F1", "ACC"]
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
_TASKS = {
"histone_marks": [
"H4",
"H3",
"H3K14ac",
"H3K4me1",
"H3K4me3",
"H3K4me2",
"H3K36me3",
"H4ac",
"H3K79me3",
"H3K9ac",
],
"regulatory_elements": [
"promoter_no_tata",
"enhancers",
"enhancers_types",
"promoter_all",
"promoter_tata",
],
"RNA_production": [
"splice_sites_donors",
"splice_sites_all",
"splice_sites_acceptors",
],
}
_BIBTEX = """@article{DallaTorre2023TheNT,
title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
author={Hugo Dalla-Torre and Liam Gonzalez and Javier Mendoza Revilla and Nicolas Lopez Carranza and Adam Henryk Grzywaczewski and Francesco Oteri and Christian Dallago and Evan Trop and Hassan Sirelkhatim and Guillaume Richard and Marcin J. Skwark and Karim Beguir and Marie Lopez and Thomas Pierrot},
journal={bioRxiv},
year={2023},
url={https://api.semanticscholar.org/CorpusID:255943445}
}
""" # noqa
_LAST_UPDATED = "Aug 28, 2023"
banner_url = "./assets/logo.png"
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>' # noqa
_INTRODUCTION_TEXT = """The π€ Nucleotide Transformer Leaderboard aims to track, rank and evaluate DNA foundational models on a set of curated downstream tasks introduced in the huggingface dataset [nucleotide_transformer_downstream_tasks](https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks) , with a standardized evaluation protocole presented in the "Methods" tab.""" # noqa
_METHODS_TEXT = """We have compared the fine-tuned performance of Nucleotide Transformer models on the 18 downstream tasks with four different pre-trained models: [DNABERT-1](https://academic.oup.com/bioinformatics/article/37/15/2112/6128680), [DNABERT-2](https://arxiv.org/abs/2306.15006), [HyenaDNA](https://arxiv.org/abs/2306.15794) (1kb and 32kb context length) and the [Enformer](https://www.nature.com/articles/s41592-021-01252-x) (which was trained as a supervised model on several genomics tasks). We ported the architecture and trained weights of each model to our code framework and performed parameter-efficient fine-tuning for every model as described above, using the same cross-validation scheme for a fair comparison. All results can be visulaized in an interactive leader-board 2. Only for HyenaDNA we performed full fine-tuning due to the incompatibility of our parameter-efficient fine-tuning approach with the model architecture.""" # noqa
def retrieve_array_from_text(text):
return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",")
def format_number(x):
return float(f"{x:.3}")
def get_dataset(
histone_tasks: List[str],
regulatory_tasks: List[str],
rna_tasks: List[str],
target_metric: str = "MCC",
aggregation_method: str = "mean",
):
tasks = histone_tasks + regulatory_tasks + rna_tasks
aggr_fn = getattr(np, aggregation_method)
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
scores = scores.apply(format_number)
df = _ORIGINAL_DF.drop(columns=_METRICS)
df["Score"] = scores
df = df.pivot(index="Model", columns="Dataset", values="Score")
df = df[tasks]
df["All Tasks"] = df.agg("mean", axis="columns").apply(format_number)
columns = list(df.columns.values)
columns.sort()
df = df[columns]
df.reset_index(inplace=True)
df = df.rename(columns={"index": "Model"})
df = df.sort_values(by=["All Tasks"], ascending=False)
leaderboard_table = gr.components.Dataframe.update(
value=df,
# datatype=TYPES,
max_rows=None,
interactive=False,
visible=True,
)
return leaderboard_table
def get_bar_plot(
histone_tasks: List[str],
regulatory_tasks: List[str],
rna_tasks: List[str],
target_metric: str = "MCC",
aggregation_method: str = "mean",
):
tasks = histone_tasks + regulatory_tasks + rna_tasks
aggr_fn = getattr(np, aggregation_method)
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
scores = scores.apply(format_number)
df = _ORIGINAL_DF.drop(columns=_METRICS)
df["Score"] = scores / len(tasks)
df = df.query(f"Dataset == {tasks}")
bar_plot = gr.BarPlot.update(
df,
x="Model",
y="Score",
color="Dataset",
width=500,
x_label_angle=-45,
x_title="Model",
y_title="Score",
color_legend_title="Downstream Task",
)
return bar_plot
with gr.Blocks() as demo:
with gr.Row():
gr.Image(banner_url, height=160, scale=1)
gr.Markdown(_INTRODUCTION_TEXT, elem_classes="markdown-text", scale=5)
# gr.Textbox(_INTRODUCTION_TEXT, scale=5)
with gr.Row():
metric_choice = gr.Dropdown(
choices=_METRICS,
value="MCC",
label="Metric displayed.",
)
aggr_choice = gr.Dropdown(
choices=_AGGREGATION_METHODS,
value="mean",
label="Aggregation used over 10-folds.",
)
with gr.Row():
regulatory_tasks = gr.CheckboxGroup(
choices=_TASKS["regulatory_elements"],
value=_TASKS["regulatory_elements"],
label="Regulatory Elements Downstream Tasks.",
info="Human data.",
scale=3,
)
rna_tasks = gr.CheckboxGroup(
choices=_TASKS["RNA_production"],
value=_TASKS["RNA_production"],
label="RNA Production Downstream Tasks.",
info="Human data.",
scale=3,
)
histone_tasks = gr.CheckboxGroup(
choices=_TASKS["histone_marks"],
label="Histone Modification Downstream Tasks.",
info="Yeast data.",
scale=4,
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
dataframe = gr.components.Dataframe(
elem_id="leaderboard-table",
)
with gr.TabItem("π Graph", elem_id="od-benchmark-tab-table", id=2):
bar_plot = gr.BarPlot(
elem_id="leaderboard-bar-plot",
)
with gr.TabItem("βΉοΈ Methods", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown(_METHODS_TEXT, elem_classes="markdown-text")
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=_BIBTEX,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
).style(show_copy_button=True)
histone_tasks.change(
get_dataset,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
regulatory_tasks.change(
get_dataset,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
rna_tasks.change(
get_dataset,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
metric_choice.change(
get_dataset,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
aggr_choice.change(
get_dataset,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
demo.load(
fn=get_dataset,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=dataframe,
)
histone_tasks.change(
get_bar_plot,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=bar_plot,
)
regulatory_tasks.change(
get_bar_plot,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=bar_plot,
)
rna_tasks.change(
get_bar_plot,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=bar_plot,
)
metric_choice.change(
get_bar_plot,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=bar_plot,
)
aggr_choice.change(
get_bar_plot,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=bar_plot,
)
demo.load(
fn=get_bar_plot,
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
outputs=bar_plot,
)
demo.launch()
|