|
from typing import List |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
|
|
_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv") |
|
_METRICS = ["MCC", "F1", "ACC"] |
|
_AGGREGATION_METHODS = ["mean", "max", "min", "median"] |
|
_TASKS = { |
|
"histone_marks": [ |
|
"H4", |
|
"H3", |
|
"H3K14ac", |
|
"H3K4me1", |
|
"H3K4me3", |
|
"H3K4me2", |
|
"H3K36me3", |
|
"H4ac", |
|
"H3K79me3", |
|
"H3K9ac", |
|
], |
|
"regulatory_elements": [ |
|
"promoter_no_tata", |
|
"enhancers", |
|
"enhancers_types", |
|
"promoter_all", |
|
"promoter_tata", |
|
], |
|
"RNA_production": [ |
|
"splice_sites_donors", |
|
"splice_sites_all", |
|
"splice_sites_acceptors", |
|
], |
|
} |
|
|
|
_BIBTEX = """@article{DallaTorre2023TheNT, |
|
title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics}, |
|
author={Hugo Dalla-Torre and Liam Gonzalez and Javier Mendoza Revilla and Nicolas Lopez Carranza and Adam Henryk Grzywaczewski and Francesco Oteri and Christian Dallago and Evan Trop and Hassan Sirelkhatim and Guillaume Richard and Marcin J. Skwark and Karim Beguir and Marie Lopez and Thomas Pierrot}, |
|
journal={bioRxiv}, |
|
year={2023}, |
|
url={https://api.semanticscholar.org/CorpusID:255943445} |
|
} |
|
""" |
|
_LAST_UPDATED = "Aug 28, 2023" |
|
|
|
banner_url = "./assets/logo.png" |
|
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>' |
|
|
|
_INTRODUCTION_TEXT = "The π€ Nucleotide Transformer Leaderboard aims to track, rank and evaluate DNA foundational models on a set of curated downstream tasks with a standardized evaluation protocole." |
|
|
|
|
|
def retrieve_array_from_text(text): |
|
return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",") |
|
|
|
|
|
def format_number(x): |
|
return float(f"{x:.3}") |
|
|
|
|
|
def get_dataset( |
|
histone_tasks: List[str], |
|
regulatory_tasks: List[str], |
|
rna_tasks: List[str], |
|
target_metric: str = "MCC", |
|
aggregation_method: str = "mean", |
|
): |
|
tasks = histone_tasks + regulatory_tasks + rna_tasks |
|
|
|
aggr_fn = getattr(np, aggregation_method) |
|
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn) |
|
scores = scores.apply(format_number) |
|
df = _ORIGINAL_DF.drop(columns=_METRICS) |
|
df["Score"] = scores |
|
df = df.pivot(index="Model", columns="Dataset", values="Score") |
|
df = df[tasks] |
|
df["All Tasks"] = df.agg("mean", axis="columns").apply(format_number) |
|
columns = list(df.columns.values) |
|
columns.sort() |
|
df = df[columns] |
|
df.reset_index(inplace=True) |
|
df = df.rename(columns={"index": "Model"}) |
|
df = df.sort_values(by=["All Tasks"], ascending=False) |
|
|
|
leaderboard_table = gr.components.Dataframe.update( |
|
value=df, |
|
|
|
max_rows=None, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return leaderboard_table |
|
|
|
|
|
def get_bar_plot( |
|
histone_tasks: List[str], |
|
regulatory_tasks: List[str], |
|
rna_tasks: List[str], |
|
target_metric: str = "MCC", |
|
aggregation_method: str = "mean", |
|
): |
|
tasks = histone_tasks + regulatory_tasks + rna_tasks |
|
|
|
aggr_fn = getattr(np, aggregation_method) |
|
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn) |
|
scores = scores.apply(format_number) |
|
df = _ORIGINAL_DF.drop(columns=_METRICS) |
|
df["Score"] = scores / len(tasks) |
|
df = df.query(f"Dataset == {tasks}") |
|
|
|
bar_plot = gr.BarPlot.update( |
|
df, |
|
x="Model", |
|
y="Score", |
|
color="Dataset", |
|
width=500, |
|
x_label_angle=-45, |
|
x_title="Model", |
|
y_title="Score", |
|
color_legend_title="Downstream Task", |
|
) |
|
return bar_plot |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.Image(banner_url, height=160, scale=1) |
|
gr.Textbox(_INTRODUCTION_TEXT, scale=5) |
|
|
|
with gr.Row(): |
|
metric_choice = gr.Dropdown( |
|
choices=_METRICS, |
|
value="MCC", |
|
label="Metric displayed.", |
|
) |
|
aggr_choice = gr.Dropdown( |
|
choices=_AGGREGATION_METHODS, |
|
value="mean", |
|
label="Aggregation used over 10-folds.", |
|
) |
|
|
|
with gr.Row(): |
|
regulatory_tasks = gr.CheckboxGroup( |
|
choices=_TASKS["regulatory_elements"], |
|
value=_TASKS["regulatory_elements"], |
|
label="Regulatory Elements Downstream Tasks.", |
|
info="Human data.", |
|
scale=3, |
|
) |
|
rna_tasks = gr.CheckboxGroup( |
|
choices=_TASKS["RNA_production"], |
|
value=_TASKS["RNA_production"], |
|
label="RNA Production Downstream Tasks.", |
|
info="Human data.", |
|
scale=3, |
|
) |
|
histone_tasks = gr.CheckboxGroup( |
|
choices=_TASKS["histone_marks"], |
|
label="Histone Modification Downstream Tasks.", |
|
info="Yeast data.", |
|
scale=4, |
|
) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0): |
|
dataframe = gr.components.Dataframe( |
|
elem_id="leaderboard-table", |
|
) |
|
|
|
with gr.TabItem("π Graph", elem_id="od-benchmark-tab-table", id=2): |
|
bar_plot = gr.BarPlot( |
|
elem_id="leaderboard-bar-plot", |
|
) |
|
|
|
with gr.TabItem("βΉοΈ Metrics", elem_id="od-benchmark-tab-table", id=1): |
|
gr.Markdown("Hey hey hey", elem_classes="markdown-text") |
|
|
|
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
gr.Textbox( |
|
value=_BIBTEX, |
|
lines=7, |
|
label="Copy the BibTeX snippet to cite this source", |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
histone_tasks.change( |
|
get_dataset, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=dataframe, |
|
) |
|
regulatory_tasks.change( |
|
get_dataset, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=dataframe, |
|
) |
|
rna_tasks.change( |
|
get_dataset, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=dataframe, |
|
) |
|
metric_choice.change( |
|
get_dataset, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=dataframe, |
|
) |
|
aggr_choice.change( |
|
get_dataset, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=dataframe, |
|
) |
|
demo.load( |
|
fn=get_dataset, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=dataframe, |
|
) |
|
|
|
histone_tasks.change( |
|
get_bar_plot, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=bar_plot, |
|
) |
|
regulatory_tasks.change( |
|
get_bar_plot, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=bar_plot, |
|
) |
|
rna_tasks.change( |
|
get_bar_plot, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=bar_plot, |
|
) |
|
metric_choice.change( |
|
get_bar_plot, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=bar_plot, |
|
) |
|
aggr_choice.change( |
|
get_bar_plot, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=bar_plot, |
|
) |
|
demo.load( |
|
fn=get_bar_plot, |
|
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice], |
|
outputs=bar_plot, |
|
) |
|
|
|
demo.launch() |
|
|