|
""" |
|
This script is a simple web demo based on Streamlit, showcasing the use of the ChatGLM3-6B model. For a more comprehensive web demo, |
|
it is recommended to use 'composite_demo'. |
|
|
|
Usage: |
|
- Run the script using Streamlit: `streamlit run web_demo_streamlit.py` |
|
- Adjust the model parameters from the sidebar. |
|
- Enter questions in the chat input box and interact with the ChatGLM3-6B model. |
|
|
|
Note: Ensure 'streamlit' and 'transformers' libraries are installed and the required model checkpoints are available. |
|
""" |
|
|
|
import os |
|
import streamlit as st |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b') |
|
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH) |
|
|
|
st.set_page_config( |
|
page_title="ChatGLM3-6B Streamlit Simple Demo", |
|
page_icon=":robot:", |
|
layout="wide" |
|
) |
|
|
|
|
|
@st.cache_resource |
|
def get_model(): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True) |
|
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval() |
|
return tokenizer, model |
|
|
|
|
|
|
|
tokenizer, model = get_model() |
|
|
|
if "history" not in st.session_state: |
|
st.session_state.history = [] |
|
if "past_key_values" not in st.session_state: |
|
st.session_state.past_key_values = None |
|
|
|
max_length = st.sidebar.slider("max_length", 0, 32768, 8192, step=1) |
|
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01) |
|
temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.6, step=0.01) |
|
|
|
buttonClean = st.sidebar.button("清理会话历史", key="clean") |
|
if buttonClean: |
|
st.session_state.history = [] |
|
st.session_state.past_key_values = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
st.rerun() |
|
|
|
for i, message in enumerate(st.session_state.history): |
|
if message["role"] == "user": |
|
with st.chat_message(name="user", avatar="user"): |
|
st.markdown(message["content"]) |
|
else: |
|
with st.chat_message(name="assistant", avatar="assistant"): |
|
st.markdown(message["content"]) |
|
|
|
with st.chat_message(name="user", avatar="user"): |
|
input_placeholder = st.empty() |
|
with st.chat_message(name="assistant", avatar="assistant"): |
|
message_placeholder = st.empty() |
|
|
|
prompt_text = st.chat_input("请输入您的问题") |
|
if prompt_text: |
|
input_placeholder.markdown(prompt_text) |
|
history = st.session_state.history |
|
past_key_values = st.session_state.past_key_values |
|
for response, history, past_key_values in model.stream_chat( |
|
tokenizer, |
|
prompt_text, |
|
history, |
|
past_key_values=past_key_values, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
return_past_key_values=True, |
|
): |
|
message_placeholder.markdown(response) |
|
st.session_state.history = history |
|
st.session_state.past_key_values = past_key_values |