|
import gradio as gr |
|
|
|
|
|
def talk(message, history): |
|
return "hi" |
|
|
|
|
|
DESCRIPTION = """ |
|
# This is a very long description |
|
A rag pipeline with a chatbot feature |
|
|
|
Resources used to build this project : |
|
|
|
* embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1 |
|
* dataset : https://huggingface.co/datasets/not-lain/wikipedia-small-3000-embedded (used mxbai-colbert-large-v1 to create the embedding column ) |
|
* faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index |
|
* chatbot : https://huggingface.co/google/gemma-7b-it |
|
|
|
If you want to support my work consider clicking on the heart react button ❤️🤗 |
|
|
|
(testing the ui) |
|
""" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=talk, |
|
chatbot=gr.Chatbot( |
|
), |
|
description=DESCRIPTION, |
|
) |
|
demo.launch(debug=True) |