Spaces:
Running
Running
import gradio as gr | |
import os | |
import uuid | |
import threading | |
import pandas as pd | |
import torch | |
from langchain.document_loaders import CSVLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import HuggingFacePipeline | |
from langchain.chains import LLMChain | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from langchain.prompts import PromptTemplate | |
# Global model cache | |
MODEL_CACHE = { | |
"model": None, | |
"tokenizer": None, | |
"init_lock": threading.Lock() | |
} | |
# Create directories for user data | |
os.makedirs("user_data", exist_ok=True) | |
def initialize_model_once(): | |
"""Initialize the model once and cache it""" | |
with MODEL_CACHE["init_lock"]: | |
if MODEL_CACHE["model"] is None: | |
# Use a smaller model for CPU environment | |
model_name = "deepseek-ai/deepseek-coder-1.3b-instruct" | |
# Load tokenizer and model with CPU-friendly configuration | |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name) | |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float32, # Use float32 for CPU | |
device_map="auto", | |
low_cpu_mem_usage=True, # Optimize for low memory | |
trust_remote_code=True | |
) | |
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"] | |
def create_llm_pipeline(): | |
"""Create a new pipeline using the cached model""" | |
tokenizer, model = initialize_model_once() | |
# Create a CPU-friendly pipeline | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=256, # Reduced for faster responses | |
temperature=0.3, | |
top_p=0.9, | |
top_k=30, | |
repetition_penalty=1.2, | |
return_full_text=False, | |
) | |
# Wrap pipeline in HuggingFacePipeline for LangChain compatibility | |
return HuggingFacePipeline(pipeline=pipe) | |
def create_conversational_chain(db, file_path): | |
llm = create_llm_pipeline() | |
# Load the file into pandas to enable code execution for data analysis | |
df = pd.read_csv(file_path) | |
# Create improved prompt template that focuses on direct answers, not code | |
template = """ | |
Berikut ini adalah informasi tentang file CSV: | |
Kolom-kolom dalam file: {columns} | |
Beberapa baris pertama: | |
{sample_data} | |
Konteks tambahan dari vector database: | |
{context} | |
Pertanyaan: {question} | |
INSTRUKSI PENTING: | |
1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia. | |
2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya. | |
3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada. | |
4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer). | |
5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir. | |
Jawaban: | |
""" | |
PROMPT = PromptTemplate( | |
template=template, | |
input_variables=["columns", "sample_data", "context", "question"] | |
) | |
# Create retriever | |
retriever = db.as_retriever(search_kwargs={"k": 3}) # Reduced k for better performance | |
# Process query with better error handling | |
def process_query(query, chat_history): | |
try: | |
# Get information from dataframe for context | |
columns_str = ", ".join(df.columns.tolist()) | |
sample_data = df.head(2).to_string() # Reduced to 2 rows for performance | |
# Get context from vector database | |
docs = retriever.get_relevant_documents(query) | |
context = "\n\n".join([doc.page_content for doc in docs]) | |
# Dynamically calculate answers for common statistical queries | |
def preprocess_query(): | |
query_lower = query.lower() | |
result = None | |
# Handle statistical queries directly | |
if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower: | |
for col in df.columns: | |
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): | |
try: | |
result = f"Rata-rata {col} adalah {df[col].mean():.2f}" | |
except: | |
pass | |
elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower: | |
for col in df.columns: | |
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): | |
try: | |
result = f"Nilai maksimum {col} adalah {df[col].max():.2f}" | |
except: | |
pass | |
elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower: | |
for col in df.columns: | |
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): | |
try: | |
result = f"Nilai minimum {col} adalah {df[col].min():.2f}" | |
except: | |
pass | |
elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower: | |
for col in df.columns: | |
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]): | |
try: | |
result = f"Total {col} adalah {df[col].sum():.2f}" | |
except: | |
pass | |
elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower: | |
result = f"Jumlah baris data adalah {len(df)}" | |
elif "kolom" in query_lower or "field" in query_lower: | |
if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower: | |
result = f"Kolom dalam data: {', '.join(df.columns.tolist())}" | |
return result | |
# Try direct calculation first | |
direct_answer = preprocess_query() | |
if direct_answer: | |
return {"answer": direct_answer} | |
# If no direct calculation, use the LLM | |
chain = LLMChain(llm=llm, prompt=PROMPT) | |
raw_result = chain.run( | |
columns=columns_str, | |
sample_data=sample_data, | |
context=context, | |
question=query | |
) | |
# Clean the result | |
cleaned_result = raw_result.strip() | |
# If result is empty after cleaning, use a fallback | |
if not cleaned_result: | |
return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."} | |
return {"answer": cleaned_result} | |
except Exception as e: | |
import traceback | |
print(f"Error in process_query: {str(e)}") | |
print(traceback.format_exc()) | |
return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"} | |
return process_query | |
class ChatBot: | |
def __init__(self, session_id): | |
self.session_id = session_id | |
self.chat_history = [] | |
self.chain = None | |
self.user_dir = f"user_data/{session_id}" | |
self.csv_file_path = None | |
os.makedirs(self.user_dir, exist_ok=True) | |
def process_file(self, file): | |
if file is None: | |
return "Mohon upload file CSV terlebih dahulu." | |
try: | |
# Handle file from Gradio | |
file_path = file.name if hasattr(file, 'name') else str(file) | |
self.csv_file_path = file_path | |
# Copy to user directory | |
user_file_path = f"{self.user_dir}/uploaded.csv" | |
# Verify the CSV can be loaded | |
try: | |
df = pd.read_csv(file_path) | |
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns") | |
# Save a copy in user directory | |
df.to_csv(user_file_path, index=False) | |
self.csv_file_path = user_file_path | |
except Exception as e: | |
return f"Error membaca CSV: {str(e)}" | |
# Load document with reduced chunk size for better memory usage | |
try: | |
loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={ | |
'delimiter': ','}) | |
data = loader.load() | |
print(f"Documents loaded: {len(data)}") | |
except Exception as e: | |
return f"Error loading documents: {str(e)}" | |
# Create vector database with optimized settings | |
try: | |
db_path = f"{self.user_dir}/db_faiss" | |
# Use CPU-friendly embeddings with smaller dimensions | |
embeddings = HuggingFaceEmbeddings( | |
model_name='sentence-transformers/all-MiniLM-L6-v2', | |
model_kwargs={'device': 'cpu'} | |
) | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local(db_path) | |
print(f"Vector database created at {db_path}") | |
except Exception as e: | |
return f"Error creating vector database: {str(e)}" | |
# Create custom chain | |
try: | |
self.chain = create_conversational_chain(db, self.csv_file_path) | |
print("Chain created successfully") | |
except Exception as e: | |
return f"Error creating chain: {str(e)}" | |
# Add basic file info to chat history for context | |
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}" | |
self.chat_history.append(("System", file_info)) | |
return "File CSV berhasil diproses! Anda dapat mulai chat dengan model untuk analisis data." | |
except Exception as e: | |
import traceback | |
print(traceback.format_exc()) | |
return f"Error pemrosesan file: {str(e)}" | |
def chat(self, message, history): | |
if self.chain is None: | |
return "Mohon upload file CSV terlebih dahulu." | |
try: | |
# Process the question with the chain | |
result = self.chain(message, self.chat_history) | |
# Get the answer with fallback | |
answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.") | |
# Ensure we never return empty | |
if not answer or answer.strip() == "": | |
answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain." | |
# Update internal chat history | |
self.chat_history.append((message, answer)) | |
# Return just the answer for Gradio | |
return answer | |
except Exception as e: | |
import traceback | |
print(traceback.format_exc()) | |
return f"Error: {str(e)}" | |
# UI Code | |
def create_gradio_interface(): | |
with gr.Blocks(title="Chat with CSV using DeepSeek") as interface: | |
session_id = gr.State(lambda: str(uuid.uuid4())) | |
chatbot_state = gr.State(lambda: None) | |
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using DeepSeek</h1>") | |
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
file_input = gr.File( | |
label="Upload CSV Anda", | |
file_types=[".csv"] | |
) | |
process_button = gr.Button("Proses CSV") | |
with gr.Accordion("Informasi Model", open=False): | |
gr.Markdown(""" | |
**Fitur**: | |
- Tanya jawab berbasis data | |
- Analisis statistik otomatis | |
- Support berbagai format CSV | |
- Manajemen sesi per pengguna | |
""") | |
with gr.Column(scale=2): | |
chatbot_interface = gr.Chatbot( | |
label="Riwayat Chat", | |
height=400 | |
) | |
message_input = gr.Textbox( | |
label="Ketik pesan Anda", | |
placeholder="Tanyakan tentang data CSV Anda...", | |
lines=2 | |
) | |
submit_button = gr.Button("Kirim") | |
clear_button = gr.Button("Bersihkan Chat") | |
# Process file handler | |
def handle_process_file(file, sess_id): | |
chatbot = ChatBot(sess_id) | |
result = chatbot.process_file(file) | |
return chatbot, [(None, result)] | |
process_button.click( | |
fn=handle_process_file, | |
inputs=[file_input, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
# Chat handlers | |
def user_message_submitted(message, history, chatbot, sess_id): | |
history = history + [(message, None)] | |
return history, "", chatbot, sess_id | |
def bot_response(history, chatbot, sess_id): | |
if chatbot is None: | |
chatbot = ChatBot(sess_id) | |
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.") | |
return chatbot, history | |
user_message = history[-1][0] | |
response = chatbot.chat(user_message, history[:-1]) | |
history[-1] = (user_message, response) | |
return chatbot, history | |
submit_button.click( | |
fn=user_message_submitted, | |
inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
).then( | |
fn=bot_response, | |
inputs=[chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
message_input.submit( | |
fn=user_message_submitted, | |
inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
).then( | |
fn=bot_response, | |
inputs=[chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
# Clear chat handler | |
def handle_clear_chat(chatbot): | |
if chatbot is not None: | |
chatbot.chat_history = [] | |
return chatbot, [] | |
clear_button.click( | |
fn=handle_clear_chat, | |
inputs=[chatbot_state], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
return interface | |
# Launch the interface | |
demo = create_gradio_interface() | |
demo.launch(share=True) |