File size: 3,909 Bytes
3d52ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import csv
import torch
import numpy


def check_device(logger=None):
    if torch.cuda.is_available():    
        device = torch.device("cuda")
        logger.info("There are {} GPU(s) available.".format(torch.cuda.device_count()))
        logger.info('We will use the GPU: {}'.format(torch.cuda.get_device_name(0)))
    else:
        logger.info('No GPU available, using the CPU instead.')
        device = torch.device("cpu")
    return device


def print_trainable_parameters(model, logger):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    logger.info(
        "Total params: {}M ({}) || Trainable params: {} || Trainable: {}%".format(
            round(all_param/1000000),
            all_param,
            trainable_params,
            100 * trainable_params / all_param
        )
    )


def save_log(
    loss: float,
    bleu: float,
    edit_distance: float,
    exact_match: float,
    wer: float,
    exprate: float,
    exprate_error_1: float,
    exprate_error_2: float,
    exprate_error_3: float,
    file_name="test_log.csv",
):
    
    os.makedirs('log', exist_ok=True)
    file_path = os.path.join('log', file_name)
    with open(file_path, mode="a", newline="") as csv_file:
        fieldnames = [
            "loss",
            "bleu",
            "edit_distance",
            "exact_match",
            "wer",
            "exprate",
            "exprate_error_1",
            "exprate_error_2",
            "exprate_error_3"
        ]
        writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
        # write the header row
        if csv_file.tell() == 0:
            writer.writeheader()
        # write the data row
        writer.writerow(
            {
                "loss": loss,
                "bleu": bleu,
                "edit_distance": edit_distance,
                "exact_match": exact_match,
                "wer": wer,
                "exprate": exprate,
                "exprate_error_1": exprate_error_1,
                "exprate_error_2": exprate_error_2,
                "exprate_error_3": exprate_error_3,
            }
        )


def cmp_result(label,rec):
    dist_mat = numpy.zeros((len(label)+1, len(rec)+1),dtype='int32')
    dist_mat[0,:] = range(len(rec) + 1)
    dist_mat[:,0] = range(len(label) + 1)
    for i in range(1, len(label) + 1):
        for j in range(1, len(rec) + 1):
            hit_score = dist_mat[i-1, j-1] + (label[i-1] != rec[j-1])
            ins_score = dist_mat[i,j-1] + 1
            del_score = dist_mat[i-1, j] + 1
            dist_mat[i,j] = min(hit_score, ins_score, del_score)
    dist = dist_mat[len(label), len(rec)]
    return dist, len(label)


def compute_exprate(predictions, references):
    total_label = 0
    total_line = 0
    total_line_rec = 0
    total_line_error_1 = 0
    total_line_error_2 = 0 
    total_line_error_3 = 0
    for i in range(len(references)):
        pre = predictions[i].split()
        ref = references[i].split()
        dist, llen = cmp_result(pre, ref)
        total_label += llen
        total_line += 1
        if dist == 0:
            total_line_rec += 1
        elif dist ==1:
            total_line_error_1 +=1
        elif dist ==2:
            total_line_error_2 +=1
        elif dist ==3:
            total_line_error_3 +=1
    exprate = float(total_line_rec)/total_line
    error_1 = float(
        total_line_error_1 + total_line_rec
    )/total_line
    error_2 = float(
        total_line_error_2 + total_line_error_1 +total_line_rec
    )/total_line
    error_3 = float(
        total_line_error_3 + total_line_error_2 + total_line_error_1 + total_line_rec
    )/total_line
    return exprate, error_1, error_2, error_3