Spaces:
Sleeping
Sleeping
Chris Hoge
commited on
Commit
·
36f0169
1
Parent(s):
8a1ffcd
Added sentiment analysis file
Browse files- sentiment_cnn.py +73 -0
sentiment_cnn.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SentimentCNN class based on Sentiment Analysis tutorial by Ben Trevett
|
2 |
+
# https://github.com/bentrevett/pytorch-sentiment-analysis
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torchtext
|
7 |
+
|
8 |
+
class SentimentCNN(nn.Module):
|
9 |
+
def __init__(self, state_dict=None, vocab=None, tokenizer='basic_english'):
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
# tokenizer setup
|
13 |
+
self.tokenizer = torchtext.data.utils.get_tokenizer(tokenizer)
|
14 |
+
self.state_dict_name = state_dict
|
15 |
+
|
16 |
+
if vocab:
|
17 |
+
self.load_vocab(vocab)
|
18 |
+
|
19 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
+
|
21 |
+
def _setup_model(self):
|
22 |
+
# cnn parameters
|
23 |
+
n_filters=100
|
24 |
+
filter_sizes=[3,5,7]
|
25 |
+
dropout_rate=0.25
|
26 |
+
self.min_length = max(filter_sizes)
|
27 |
+
|
28 |
+
# language space parameters
|
29 |
+
embedding_dim=300
|
30 |
+
output_dim=2
|
31 |
+
|
32 |
+
# model setup
|
33 |
+
self.embedding = nn.Embedding(
|
34 |
+
len(self.vocab),
|
35 |
+
embedding_dim,
|
36 |
+
padding_idx=self.pad_index)
|
37 |
+
self.convs = nn.ModuleList([nn.Conv1d(embedding_dim,
|
38 |
+
n_filters,
|
39 |
+
filter_size)
|
40 |
+
for filter_size in filter_sizes])
|
41 |
+
self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim)
|
42 |
+
self.dropout = nn.Dropout(dropout_rate)
|
43 |
+
|
44 |
+
if self.state_dict_name:
|
45 |
+
self.load_state_dict(torch.load(self.state_dict_name))
|
46 |
+
|
47 |
+
def load_vocab(self, vocab):
|
48 |
+
# vocabulary parameters
|
49 |
+
self.vocab = torch.load(vocab)
|
50 |
+
self.pad_index = self.vocab['<pad>']
|
51 |
+
self._setup_model()
|
52 |
+
|
53 |
+
def forward(self, ids):
|
54 |
+
embedded = self.dropout(self.embedding(ids))
|
55 |
+
embedded = embedded.permute(0,2,1)
|
56 |
+
conved = [torch.relu(conv(embedded)) for conv in self.convs]
|
57 |
+
pooled = [conv.max(dim=-1).values for conv in conved]
|
58 |
+
cat = self.dropout(torch.cat(pooled, dim=-1))
|
59 |
+
prediction = self.fc(cat)
|
60 |
+
return prediction
|
61 |
+
|
62 |
+
def predict_sentiment(self, text):
|
63 |
+
tokens = self.tokenizer(text)
|
64 |
+
ids = [self.vocab[t] for t in tokens]
|
65 |
+
if len(ids) < self.min_length:
|
66 |
+
ids += [self.pad_index] * (self.min_length - len(ids))
|
67 |
+
tensor = torch.LongTensor(ids).unsqueeze(dim=0).to(self.device)
|
68 |
+
prediction = self(tensor).squeeze(dim=0)
|
69 |
+
probability = torch.softmax(prediction, dim=-1)
|
70 |
+
predicted_class = prediction.argmax(dim=-1).item()
|
71 |
+
predicted_probability = probability[predicted_class].item()
|
72 |
+
|
73 |
+
return predicted_class, predicted_probability
|