eggarsway's picture
more example
889e565
# This demo needs to be run from the repo folder.
# python demo/fake_gan/run.py
import os
import random
import gradio as gr
import itertools
from PIL import Image, ImageFont, ImageDraw
import DirectedDiffusion
# prompt
# boundingbox
# prompt indices for region
# number of trailing attention
# number of DD steps
# gaussian coefficient
# seed
EXAMPLES = [
[
"A painting of a tiger, on the wall in the living room",
"0.2,0.6,0.0,0.5",
"1,5",
5,
15,
1.0,
2094889,
],
[
"a dog diving into a pool in sunny day",
"0.0,0.5,0.0,0.5",
"1,2",
10,
20,
5.0,
2483964026826,
],
[
"A red cube above a blue sphere",
"0.4,0.7,0.0,0.5 0.4,0.7,0.5,1.0",
"2,3 6,7",
10,
20,
1.0,
1213698,
],
[
"The sun shining on a house",
"0.0,0.5,0.0,0.5",
"1,2",
10,
20,
1.0,
2483964026826,
],
[
"a diver swimming through a school of fish",
"0.5,1.0,0.0,0.5",
"1,2",
10,
10,
5.0,
2483964026826,
],
[
"A stone castle surrounded by lakes and trees",
"0.3,0.7,0.0,1.0",
"1,2,3",
10,
5,
1.0,
2483964026826,
],
[
"A dog hiding behind the chair",
"0.5,0.9,0.0,1.0",
"1,2",
10,
5,
2.5,
248396402123,
],
[
"A dog sitting next to a mirror",
"0.0,0.5,0.0,1.0 0.5,1.0,0.0,1.0",
"1,2 6,7",
20,
5,
1.0,
24839640268232521,
],
]
model_bundle = DirectedDiffusion.AttnEditorUtils.load_all_models(
model_path_diffusion="CompVis/stable-diffusion-v1-4"
)
# model_bundle = DirectedDiffusion.AttnEditorUtils.load_all_models(
# model_path_diffusion="../DirectedDiffusion/assets/models/stable-diffusion-v1-4"
# )
ALL_OUTPUT = {}
def directed_diffusion(
in_prompt,
in_bb,
in_token_ids,
in_slider_trailings,
in_slider_ddsteps,
in_slider_gcoef,
in_seed,
is_draw_bbox,
):
str_arg_to_val = lambda arg, f: [
[f(b) for b in a.split(",")] for a in arg.split(" ")
]
roi = str_arg_to_val(in_bb, float)
attn_editor_bundle = {
"edit_index": str_arg_to_val(in_token_ids, int),
"roi": roi,
"num_trailing_attn": [in_slider_trailings] * len(roi),
"num_affected_steps": in_slider_ddsteps,
"noise_scale": [in_slider_gcoef] * len(roi),
}
img = DirectedDiffusion.Diffusion.stablediffusion(
model_bundle,
attn_editor_bundle=attn_editor_bundle,
guidance_scale=7.5,
prompt=in_prompt,
steps=50,
seed=in_seed,
is_save_attn=False,
is_save_recons=False,
)
if is_draw_bbox and in_slider_ddsteps > 0:
for r in roi:
x0, y0, x1, y1 = [int(r_ * 512) for r_ in r]
image_editable = ImageDraw.Draw(img)
image_editable.rectangle(
xy=[x0, x1, y0, y1], outline=(255, 0, 0, 255), width=5
)
return img
def run_it(
in_prompt,
in_bb,
in_token_ids,
in_slider_trailings,
in_slider_ddsteps,
in_slider_gcoef,
in_seed,
is_draw_bbox,
is_grid_search,
progress=gr.Progress(),
):
global ALL_OUTPUT
num_affected_steps = [in_slider_ddsteps]
noise_scale = [in_slider_gcoef]
num_trailing_attn = [in_slider_trailings]
if is_grid_search:
num_affected_steps = [5, 10]
noise_scale = [1.0, 1.5, 2.5]
num_trailing_attn = [10, 20, 30, 40]
param_list = [num_affected_steps, noise_scale, num_trailing_attn]
param_list = list(itertools.product(*param_list))
results = []
progress(0, desc="Starting...")
for i, element in enumerate(progress.tqdm(param_list)):
print("=========== Arguments ============")
print("Prompt:", in_prompt)
print("BoundingBox:", in_bb)
print("Token indices:", in_token_ids)
print("Num Trialings:", element[2])
print("Num DD steps:", element[0])
print("Gaussian coef:", element[1])
print("Seed:", in_seed)
print("===================================")
img = directed_diffusion(
in_prompt=in_prompt,
in_bb=in_bb,
in_token_ids=in_token_ids,
in_slider_trailings=element[2],
in_slider_ddsteps=element[0],
in_slider_gcoef=element[1],
in_seed=in_seed,
is_draw_bbox=is_draw_bbox,
)
results.append(
(
img,
"#Trailing:{},#DDSteps:{},GaussianCoef:{}".format(
element[2], element[0], element[1]
),
)
)
return results
with gr.Blocks() as demo:
gr.Markdown(
"""
### Directed Diffusion: Direct Control of Object Placement through Attention Guidance
**\*Wan-Duo Kurt Ma, \^J. P. Lewis, \^\*W. Bastiaan Kleijn, \^Thomas Leung**
*\*Victoria University of Wellington, \^Google Research*
Let's pin the object in the prompt as you wish!
For more information, please checkout our project page ([link](https://hohonu-vicml.github.io/DirectedDiffusion.Page/)), repository ([link](https://github.com/hohonu-vicml/DirectedDiffusion)), and the paper ([link](https://arxiv.org/abs/2302.13153))
"""
)
with gr.Row(variant="panel"):
with gr.Column(variant="compact"):
in_prompt = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
container=False,
)
with gr.Row(variant="compact"):
in_bb = gr.Textbox(
label="Bounding box",
show_label=True,
max_lines=1,
placeholder="e.g., 0.1,0.5,0.3,0.6",
)
in_token_ids = gr.Textbox(
label="Token indices",
show_label=True,
max_lines=1,
placeholder="e.g., 1,2,3",
)
in_seed = gr.Number(
value=2483964026821236, label="Random seed", interactive=True
)
with gr.Row(variant="compact"):
is_grid_search = gr.Checkbox(
value=False,
label="Grid search? (If checked then sliders are ignored)",
)
is_draw_bbox = gr.Checkbox(
value=True,
label="To draw the bounding box?",
)
with gr.Row(variant="compact"):
in_slider_trailings = gr.Slider(
minimum=0, maximum=30, value=10, step=1, label="#trailings"
)
in_slider_ddsteps = gr.Slider(
minimum=0, maximum=30, value=10, step=1, label="#DDSteps"
)
in_slider_gcoef = gr.Slider(
minimum=0, maximum=10, value=1.0, step=0.1, label="GaussianCoef"
)
with gr.Row(variant="compact"):
btn_run = gr.Button("Generate image").style(full_width=True)
#btn_clean = gr.Button("Clean Gallery").style(full_width=True)
gr.Markdown(
""" Note:
1) Please click one of the examples below for quick setup.
2) if #DDsteps==0, it means the SD process runs without DD.
3) The bounding box is the tuple of four scalars representing the fractional boundary of an image: left,right,top,bottom
4) The token indices are the word positions in the prompt associated with the edited region, 1-indexed.
"""
)
with gr.Column(variant="compact"):
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
args = [
in_prompt,
in_bb,
in_token_ids,
in_slider_trailings,
in_slider_ddsteps,
in_slider_gcoef,
in_seed,
is_draw_bbox,
is_grid_search,
]
btn_run.click(run_it, inputs=args, outputs=gallery)
#btn_clean.click(clean_gallery, outputs=gallery)
examples = gr.Examples(
examples=EXAMPLES,
inputs=args,
)
if __name__ == "__main__":
demo.queue().launch()