File size: 5,689 Bytes
85456ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import enum
import torch
import torchvision
import numpy as np

from ..Misc import Logger as log
from ..Setting import Config

import matplotlib.pyplot as plt
import matplotlib

# To avoid plt.imshow crash
matplotlib.use("Agg")


class CAttnProcChoice(enum.Enum):
    INVALID = -1
    BASIC = 0


def plot_activations(cross_attn, prompt, plot_with_trailings=False):
    num_frames = cross_attn.shape[0]
    cross_attn = cross_attn.cpu()
    for i in range(num_frames):
        filename = "/tmp/out.{:04d}.jpg".format(i)
        plot_activation(cross_attn[i], prompt, filename, plot_with_trailings)


def plot_activation(cross_attn, prompt, filepath="", plot_with_trailings=False):

    splitted_prompt = prompt.split(" ")
    n = len(splitted_prompt)
    start = 0
    arrs = []
    if plot_with_trailings:
        for j in range(5):
            arr = []
            for i in range(start, start + n):
                cross_attn_sliced = cross_attn[..., i + 1]
                arr.append(cross_attn_sliced.T)
            start += n
            arr = np.hstack(arr)
            arrs.append(arr)
        arrs = np.vstack(arrs).T
    else:
        arr = []
        for i in range(start, start + n):
            print(i)
            cross_attn_sliced = cross_attn[..., i + 1]
            arr.append(cross_attn_sliced)
        arrs = np.hstack(arr).astype(np.float32)
    plt.clf()

    v_min = arrs.min()
    v_max = arrs.max()
    n_min = 0.0
    n_max = 1

    arrs = (arrs - v_min) / (v_max - v_min)
    arrs = (arrs * (n_max - n_min)) + n_min

    plt.imshow(arrs, cmap="jet")
    plt.title(prompt)
    plt.colorbar(orientation="horizontal", pad=0.2)
    if filepath:
        plt.savefig(filepath)
        log.info(f"Saved [{filepath}]")
    else:
        plt.show()


def get_cross_attn(
    unet,
    resolution=32,
    target_size=64,
):
    """To get the cross attention map softmax(QK^T) from Unet.
    Args:
        unet (UNet2DConditionModel): unet
        resolution (int): the cross attention map with specific resolution. It only supports 64, 32, 16, and 8
        target_size (int): the target resolution for resizing the cross attention map
    Returns:
        (torch.tensor): a tensor with shape (target_size, target_size, 77)
    """
    attns = []
    check = [8, 16, 32, 64]
    if resolution not in check:
        raise ValueError(
            "The cross attention resolution only support 8x8, 16x16, 32x32, and 64x64. "
            "The given resolution {}x{} is not in the list. Abort.".format(
                resolution, resolution
            )
        )
    for name, module in unet.named_modules():
        module_name = type(module).__name__
        # NOTE: attn2 is for cross-attention while attn1 is self-attention
        dim = resolution * resolution
        if not hasattr(module, "processor"):
            continue
        if hasattr(module.processor, "cross_attention_map"):
            attn = module.processor.cross_attention_map[None, ...]
            attns.append(attn)

    if not attns:
        print("Err: Quried attns size [{}]".format(len(attns)))
        return
    attns = torch.cat(attns, dim=0)
    attns = torch.sum(attns, dim=0)
    # resized = torch.zeros([target_size, target_size, 77])
    # f = torchvision.transforms.Resize(size=(64, 64))
    # dim = attns.shape[1]
    # print(attns.shape)
    # for i in range(77):
    #     attn_slice = attns[..., i].view(1, dim, dim)
    #     resized[..., i] = f(attn_slice)[0]
    return attns


def get_avg_cross_attn(unet, resolutions, resize):
    """To get the average cross attention map across its resolutions.
    Args:
        unet (UNet2DConditionModel): unet
        resolution (list): a list of specific resolution. It only supports 64, 32, 16, and 8
        target_size (int): the target resolution for resizing the cross attention map
    Returns:
        (torch.tensor): a tensor with shape (target_size, target_size, 77)
    """
    cross_attns = []
    for resolution in resolutions:
        try:
            cross_attns.append(get_cross_attn(unet, resolution, resize))
        except:
            log.warn(f"No cross-attention map with resolution [{resolution}]")
    if cross_attns:
        cross_attns = torch.stack(cross_attns).mean(0)
    return cross_attns


def save_cross_attn(unet):
    """TODO: to save cross attn"""
    for name, module in unet.named_modules():
        module_name = type(module).__name__
        if module_name == "CrossAttention" and "attn2" in name:
            folder = "/tmp"
            filepath = os.path.join(folder, name + ".pt")
            torch.save(module.attn, filepath)
            print(filepath)


def use_dd(unet, use=True):
    for name, module in unet.named_modules():
        module_name = type(module).__name__
        if module_name == "CrossAttention" and "attn2" in name:
            module.processor.use_dd = use


def use_dd_temporal(unet, use=True):
    for name, module in unet.named_modules():
        module_name = type(module).__name__
        if module_name == "CrossAttention" and "attn2" in name:
            module.processor.use_dd_temporal = use


def get_loss(unet):
    loss = 0
    total = 0
    for name, module in unet.named_modules():
        module_name = type(module).__name__
        if module_name == "CrossAttention" and "attn2" in name:
            loss += module.processor.loss
            total += 1
    return loss / total


def get_params(unet):
    parameters = []
    for name, module in unet.named_modules():
        module_name = type(module).__name__
        if module_name == "CrossAttention" and "attn2" in name:
            parameters.append(module.processor.parameters)
    return parameters