import tqdm import inspect from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import torch from transformers import CLIPTextModel, CLIPTokenizer from dataclasses import dataclass from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, UNet3DConditionModel from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( deprecate, logging, replace_example_docstring, BaseOutput, ) from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth import ( tensor2vid, ) from ..Misc import Logger as log from ..Misc import Const from .Utils import initiailization, keyframed_bbox, keyframed_prompt_embeds, use_dd, use_dd_temporal @dataclass class TextToVideoSDPipelineOutput(BaseOutput): """ Output class for text-to-video pipelines. Args: frames (`List[np.ndarray]` or `torch.FloatTensor`) List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as a `torch` tensor. The length of the list denotes the video length (the number of frames). """ frames: Union[List[np.ndarray], torch.FloatTensor] latents: Union[List[np.ndarray], torch.FloatTensor] bbox_per_frame: torch.tensor @torch.no_grad() def text_to_video_sd_pipeline_call( self, bundle=None, # prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, # num_frames: int = 16, num_inference_steps: int = 50, # num_dd_steps: int = 0, guidance_scale: float = 9.0, negative_prompt: Optional[Union[str, List[str]]] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "np", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, progress = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated video. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated video. num_frames (`int`, *optional*, defaults to 16): The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds amounts to 2 seconds of video. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Latents should be of shape `(batch_size, num_channel, num_frames, height, width)`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). Examples: Returns: [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. """ assert ( len(bundle["keyframe"]) >= 2 ), "Must be greater than 2 keyframes. Input {} keys".format(len(bundle["keyframe"])) assert ( bundle["keyframe"][0]["frame"] == 0 ), "First keyframe must indicate frame at 0, but given {}".format( bundle["keyframe"][0]["frame"] ) if bundle["keyframe"][-1]["frame"] != 23: log.info( "It's recommended to set the last key to 23 to match" " the sequence length 24 used in training ZeroScope" ) for i in range(len(bundle["keyframe"]) - 1): log.info assert ( bundle["keyframe"][i + 1]["frame"] > bundle["keyframe"][i]["frame"] ), "The keyframe indices must be ordered in the config file, Sorry!" bundle["prompt_base"] = bundle["keyframe"][0]["prompt"] prompt = bundle["prompt_base"] #prompt += Const.POSITIVE_PROMPT num_frames = bundle["keyframe"][-1]["frame"] + 1 num_dd_spatial_steps = bundle["num_dd_spatial_steps"] num_dd_temporal_steps = bundle["num_dd_temporal_steps"] bbox_per_frame = keyframed_bbox(bundle) initiailization(unet=self.unet, bundle=bundle, bbox_per_frame=bbox_per_frame) from pprint import pprint log.info("Experiment parameters:") print("==========================================") pprint(bundle) print("==========================================") # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_images_per_prompt = 1 negative_prompt = Const.NEGATIVE_PROMPT # 1. Check inputs. Raise error if not correct # self.check_inputs( # prompt, # height, # width, # callback_steps, # negative_prompt, # prompt_embeds, # negative_prompt_embeds, # ) # # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) # prompt_embeds, negative_prompt_embeds = self.encode_prompt( # prompt, # device, # num_images_per_prompt, # do_classifier_free_guidance, # negative_prompt, # prompt_embeds=prompt_embeds, # negative_prompt_embeds=negative_prompt_embeds, # lora_scale=text_encoder_lora_scale, # ) prompt_embeds, negative_prompt_embeds = keyframed_prompt_embeds( bundle, self.encode_prompt, device ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order latents_at_steps = [] with self.progress_bar(total=num_inference_steps) as progress_bar: if type(progress)!=type(None): timesteps = progress.tqdm(timesteps, desc="Processing") i = 0 for t in timesteps: # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual if i < (num_dd_spatial_steps): use_dd(self.unet, True) if i < (num_dd_temporal_steps): use_dd_temporal(self.unet, True) noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] use_dd(self.unet, False) use_dd_temporal(self.unet, False) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # reshape latents bsz, channel, frames, width, height = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape( bsz * frames, channel, width, height ) noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape( bsz * frames, channel, width, height ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs ).prev_sample # if i==num_dd_steps: # print("PF!", latents.shape) # n = latents.shape[0] # for f in range(n): # latents[f] = torch.roll(latents[f], -f, dims=-1) # reshape latents back latents = ( latents[None, :] .reshape(bsz, frames, channel, width, height) .permute(0, 2, 1, 3, 4) ) latents_at_steps.append(latents) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) i += 1 if output_type == "latent": return TextToVideoSDPipelineOutput(frames=latents) video_tensor = self.decode_latents(latents) if output_type == "pt": video = video_tensor else: video = tensor2vid(video_tensor) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) latents_at_steps = torch.cat(latents_at_steps) return TextToVideoSDPipelineOutput(frames=video, latents=latents_at_steps, bbox_per_frame=bbox_per_frame)