Spaces:
Sleeping
Sleeping
File size: 14,617 Bytes
4559323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer
from retrievers import PARetriever
from utils_code import create_chat_engine
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import os
from llama_index.llms.azure_openai import AzureOpenAI
from dotenv import load_dotenv, find_dotenv
from retrievers import HyPARetriever, PARetriever
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.graph_stores.neo4j import Neo4jPropertyGraphStore
from llama_index.core import PropertyGraphIndex
from llama_index.core.vector_stores import MetadataFilter, MetadataFilters, FilterOperator
from llama_index.retrievers.bm25 import BM25Retriever
# Load environment variables from the .env file
dotenv_path = find_dotenv()
#print(f"Dotenv Path: {dotenv_path}")
load_dotenv(dotenv_path)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5")
Settings.embed_model = embed_model
# Set Azure OpenAI keys for Giskard if needed
#os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("GSK_AZURE_OPENAI_API_KEY")
#os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("GSK_AZURE_OPENAI_ENDPOINT")
os.environ["GSK_LLM_MODEL"] = "gpt-4o-mini"
# Pinecone and Neo4j credentials
pinecone_api_key = os.getenv("PINECONE_API_KEY")
ll144_index_name = 'll144'
euaiact_index_name = 'euaiact'
# Initialize Pinecone
from pinecone import Pinecone
pc = Pinecone(api_key=pinecone_api_key)
def metadata_filter(corpus_name):
if corpus_name == "EUAIACT":
# Filter for 'EUAIACT.pdf'
filter = MetadataFilters(filters=[MetadataFilter(key="filepath", value="'EUAIACT.pdf'", operator=FilterOperator.CONTAINS)])
elif corpus_name == "LL144":
# Filter for 'LLL144.pdf' or 'LL144_Definitions.pdf'
filter = MetadataFilters(filters=[
MetadataFilter(key="filepath", value="'LL144.pdf'", operator=FilterOperator.CONTAINS),
MetadataFilter(key="filepath", value="'LL144_Definitions.pdf'", operator=FilterOperator.CONTAINS)
])
return filter
# Load vector index
#@st.cache_data(ttl=None, persist=None)
def load_vector_index(corpus_name):
if corpus_name == "LL144":
pinecone_index = pc.Index(ll144_index_name)
elif corpus_name == "EUAIACT":
pinecone_index = pc.Index(euaiact_index_name)
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
vector_index = VectorStoreIndex.from_vector_store(vector_store)
return vector_index
# Load property graph index
#@st.cache_data(ttl=None, persist=None)
def load_pg_index():
neo4j_username = os.getenv("NEO4J_USERNAME")
neo4j_password = os.getenv("NEO4J_PASSWORD")
neo4j_url = os.getenv("NEO4J_URI")
graph_store = Neo4jPropertyGraphStore(username=neo4j_username, password=neo4j_password, url=neo4j_url)
pg_index = PropertyGraphIndex.from_existing(property_graph_store=graph_store)
return pg_index
# Initialize the retriever (HyPA or PA)
def init_retriever(retriever_type, corpus_name, use_reranker, use_rewriter, classifier_model):
# Check if vector index is cached, if not, load it
if "vector_index" not in st.session_state:
st.session_state.vector_index = load_vector_index(corpus_name)
# Check if property graph index is cached, if not, load it
if "pg_index" not in st.session_state:
st.session_state.pg_index = load_pg_index()
vector_index = st.session_state.vector_index
graph_index = st.session_state.pg_index
llm = st.session_state.llm
filter = metadata_filter(corpus_name=corpus_name)
# Set the reranker model if selected
reranker_model_name = "BAAI/bge-reranker-large" if use_reranker else None
# Choose the appropriate retriever based on user selection
if retriever_type == "HyPA":
retriever = HyPARetriever(
llm=llm,
vector_retriever=vector_index.as_retriever(similarity_top_k=10),
bm25_retriever=None,#BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10),
kg_index=graph_index, # Include KG for HyPA
rewriter=use_rewriter, # Set rewriter option
classifier_model=classifier_model, # Use the selected classifier model
verbose=False,
property_index=True, # Use property graph index
reranker_model_name=reranker_model_name, # Use reranker if selected
pg_filters=filter
)
else:
retriever = PARetriever(
llm=llm,
vector_retriever=vector_index.as_retriever(similarity_top_k=10),
bm25_retriever=None,#BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10),
rewriter=use_rewriter, # Set rewriter option
classifier_model=classifier_model, # Use the selected classifier model
verbose=False,
reranker_model_name=reranker_model_name # Use reranker if selected
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
chat_engine = create_chat_engine(retriever=retriever, memory=memory, llm=llm)
st.session_state.chat_engine = chat_engine
#return chat_engine
def process_query(query):
"""Processes the input query and displays it along with the response in the main chat area."""
# Append the user query to the message history and display it
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.write(query)
# Ensure the chat engine is initialized
chat_engine = st.session_state.get('chat_engine', None)
if chat_engine:
# Process the query through the chat engine
with st.chat_message("assistant"):
with st.spinner("Retrieving Knowledge..."):
response = chat_engine.stream_chat(query)
response_str = ""
response_container = st.empty()
for token in response.response_gen:
response_str += token
response_container.write(response_str)
# Append the assistant's response to the message history
st.session_state.messages.append({"role": "assistant", "content": response_str})
# Expander for additional info
with st.expander("Source Nodes"):
# Display source nodes
if hasattr(response, 'source_nodes') and response.source_nodes:
for idx, node in enumerate(response.source_nodes):
st.markdown(f"#### Source Node {idx + 1}")
st.write(f"**Node ID:** {node.node_id}")
st.write(f"**Node Score:** {node.score}")
st.write("**Metadata:**")
for key, value in node.metadata.items():
st.write(f"- **{key}:** {value}")
st.write("**Content:**")
st.write(node.node.get_content())
# Add a horizontal line to separate nodes
st.markdown("---")
else:
st.write("No additional source nodes available.")
st.session_state.messages.append({"role": "assistant", "content": str(response)})
# Streamlit App
def main():
# Sidebar for retriever options
with st.sidebar:
st.image('holisticai.svg', use_column_width=True)
st.title("Retriever Settings")
# Azure OpenAI credentials input fields (start with blank fields)
azure_api_key = st.text_input("Azure OpenAI API Key", value="", type="password")
azure_endpoint = st.text_input("Azure OpenAI Endpoint", value="", type="password")
llm_model_choice = st.selectbox("Select LLM Model", ["gpt-4o-mini", "gpt35"])
# Let the user make selections without updating session state yet
retriever_type = st.selectbox("Select Retriever Method", ["PA", "HyPA"])
corpus_name = st.selectbox("Select Corpus", ["LL144", "EUAIACT"])
temperature = st.slider("Set LLM Temperature", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
# Display a red warning about non-zero temperature
if temperature > 0:
st.markdown(
"<p style='color:red;'>Warning: A non-zero temperature may lead to hallucinations in the generated responses.</p>",
unsafe_allow_html=True
)
# Checkboxes for reranker and rewriter options
use_reranker = st.checkbox("Use Reranker")
use_rewriter = st.checkbox("Use Rewriter")
# Radio buttons for classifier model
classifier_type = st.radio("Select Classifier Type", ["2-Class", "3-Class"])
classifier_model = "rk68/distilbert-q-classifier-2" if classifier_type == "2-Class" else "rk68/distilbert-q-classifier-3"
# When the user clicks "Initialize", store everything in session state
if st.button("Initialize"):
st.session_state.retriever_type = retriever_type
st.session_state.corpus_name = corpus_name
st.session_state.temperature = temperature
st.session_state.use_reranker = use_reranker
st.session_state.use_rewriter = use_rewriter
st.session_state.classifier_type = classifier_type
st.session_state.classifier_model = classifier_model
# Store the user inputs in session state
st.session_state.azure_api_key = azure_api_key
st.session_state.azure_endpoint = azure_endpoint
# Set the environment variables from user inputs
os.environ["AZURE_OPENAI_API_KEY"] = azure_api_key
os.environ["AZURE_OPENAI_ENDPOINT"] = azure_endpoint
llm = AzureOpenAI(
deployment_name=llm_model_choice, temperature=temperature,
api_key=azure_api_key, azure_endpoint=azure_endpoint,
api_version=os.getenv("AZURE_API_VERSION")
)
Settings.llm = llm
st.session_state.llm = llm
# Initialize retriever after storing the settings
init_retriever(retriever_type, corpus_name, use_reranker, use_rewriter, classifier_model)
st.success("Retriever Initialized")
# Example questions based on selected corpus
st.markdown("### Example Queries")
# Example questions with unique button handling
example_questions = {
"LL144": [
"What is a bias audit?",
"When does it come into effect?",
"Summarise Local Law 144"
],
"EUAIACT": [
"What is an AI system?",
"What are the key takeaways?",
"Explain the key provisions of EUAIACT."
]
}
# Display buttons for the example queries
for idx, question in enumerate(example_questions.get(corpus_name, [])):
if st.button(f"{question} [{idx}]"):
process_query(question)
# Add a disclaimer at the bottom
st.markdown("---") # Horizontal line for separation
st.markdown(
"""
<p style="color:grey; font-size:12px;">
<strong>Disclaimer:</strong> This system is an academic prototype demonstration of our hybrid parameter-adaptive retrieval-augmented generation system. It is <strong>NOT</strong> a production-ready application. All outputs should be considered experimental and may not be fully accurate. This system should not be used for making important legal decisions. For complete, specific, and tailored legal advice, please consult a licensed legal professional.<br><br>
</p>
""",
unsafe_allow_html=True
)
# Check if the retriever is initialized
if "chat_engine" in st.session_state:
chat_engine = st.session_state.chat_engine
else:
st.warning("Please initialize the retriever from the sidebar.")
# Initialize session state for chat messages
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you?"}]
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate a response if the last message is from the user
if st.session_state.messages[-1]["role"] == "user":
with st.chat_message("assistant"):
with st.spinner("Retrieving Knowledge..."):
response = chat_engine.stream_chat(prompt)
response_str = ""
response_container = st.empty()
for token in response.response_gen:
response_str += token
response_container.write(response_str)
# Expander for additional info
with st.expander("Source Nodes"):
# Display source nodes
if hasattr(response, 'source_nodes') and response.source_nodes:
for idx, node in enumerate(response.source_nodes):
st.markdown(f"#### Source Node {idx + 1}")
st.write(f"**Node ID:** {node.node_id}")
st.write(f"**Node Score:** {node.score}")
st.write("**Metadata:**")
for key, value in node.metadata.items():
st.write(f"- **{key}:** {value}")
st.write("**Content:**")
st.write(node.node.get_content())
# Add a horizontal line to separate nodes
st.markdown("---")
else:
st.write("No additional source nodes available.")
st.session_state.messages.append({"role": "assistant", "content": str(response)})
if __name__ == "__main__":
main()
|