Spaces:
Sleeping
Sleeping
File size: 18,794 Bytes
4559323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
from prompts import get_classification_prompt, get_query_generation_prompt
from utils_code import initialize_openai_creds, create_llm
from llama_index.core.schema import QueryBundle, NodeWithScore
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from transformers import pipeline
from typing import List, Optional
import asyncio
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.indices.property_graph import LLMSynonymRetriever
from llama_index.core.indices.property_graph import VectorContextRetriever, PGRetriever
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever, KGTableRetriever
import os
class PARetriever(BaseRetriever):
"""Custom retriever that performs query rewriting, Vector search, and BM25 search without Knowledge Graph search."""
def __init__(
self,
llm, # LLM for query generation
vector_retriever: Optional[VectorIndexRetriever] = None,
bm25_retriever: Optional[BaseRetriever] = None,
mode: str = "OR",
rewriter: bool = True,
classifier_model: Optional[str] = None, # Optional classifier model
device: str = 'cpu', # Device to CPU for huggingface demo
reranker_model_name: Optional[str] = None, # Model name for SentenceTransformerRerank
verbose: bool = False, # Verbose flag
fixed_params: Optional[dict] = None, # New parameter to pass in fixed parameters
categories_list: Optional[List[str]] = None, # List of categories for query classification
param_mappings: Optional[dict] = None # Custom parameter mappings based on classifier labels
) -> None:
"""Initialize PARetriever parameters."""
self._vector_retriever = vector_retriever
self._bm25_retriever = bm25_retriever
self._llm = llm
self._rewriter = rewriter
self._mode = mode
self._reranker_model_name = reranker_model_name
self._reranker = None # Initialize reranker as None
self.verbose = verbose
self.fixed_params = fixed_params
self.categories_list = categories_list
self.param_mappings = param_mappings or {
"label_0": {"top_k": 5, "max_keywords_per_query": 3, "max_knowledge_sequence": 1},
"label_1": {"top_k": 7, "max_keywords_per_query": 4, "max_knowledge_sequence": 2},
"label_2": {"top_k": 10, "max_keywords_per_query": 5, "max_knowledge_sequence": 3}
}
# Initialize the classifier if provided
self.classifier = None
if classifier_model:
self.classifier = pipeline("text-classification", model=classifier_model, device=device)
if mode not in ("AND", "OR"):
raise ValueError("Invalid mode.")
def classify_query_and_get_params(self, query: str) -> (str, dict):
"""Classify the query and determine adaptive parameters or use fixed parameters."""
if self.fixed_params:
# Use fixed parameters from the dictionary if provided
params = self.fixed_params
classification_result = "Fixed"
if self.verbose:
print(f"Using fixed parameters: {params}")
else:
params = {
"top_k": 5, # Default top-k
"max_keywords_per_query": 4, # Default max keywords
"max_knowledge_sequence": 2 # Default max knowledge sequence
}
classification_result = None
if self.classifier:
classification = self.classifier(query)[0]
label = classification['label'] # Get the classification label directly
classification_result = label # Store the classification result
if self.verbose:
print(f"Query Classification: {classification['label']} with score {classification['score']}")
# Use custom mappings or default mappings
if label in self.param_mappings:
params = self.param_mappings[label]
else:
if self.verbose:
print(f"Warning: No mapping found for label {label}, using default parameters.")
self._classification_result = classification_result
return classification_result, params
def classify_query(self, query_str: str) -> Optional[str]:
"""Classify the query into one of the predefined categories using LLM, or skip if no categories are provided."""
if not self.categories_list:
if self.verbose:
print("No categories provided, skipping query classification.")
return None
# Generate the classification prompt using external function
classification_prompt = get_classification_prompt(self.categories_list) + f" Query: '{query_str}'"
response = self._llm.complete(classification_prompt)
category = response.text.strip()
# Return the category only if it's in the categories list
return category if category in self.categories_list else None
def generate_queries(self, query_str: str, category: Optional[str], num_queries: int = 3) -> List[str]:
"""Generate query variations using the LLM, taking into account the category if applicable."""
# Generate query generation prompt using external function
query_gen_prompt = get_query_generation_prompt(query_str, num_queries)
response = self._llm.complete(query_gen_prompt)
queries = response.text.split("\n")
queries = [query.strip() for query in queries if query.strip()]
if category:
category_query = f"{category}"
queries.append(category_query)
return queries
async def run_queries(self, queries: List[str], retrievers: List[BaseRetriever]) -> dict:
"""Run queries against retrievers."""
tasks = []
for query in queries:
for retriever in retrievers:
tasks.append(retriever.aretrieve(query))
task_results = await asyncio.gather(*tasks)
results_dict = {}
for i, (query, query_result) in enumerate(zip(queries, task_results)):
results_dict[(query, i)] = query_result
return results_dict
def fuse_vector_and_bm25_results(self, results_dict, similarity_top_k: int) -> List[NodeWithScore]:
"""Fuse results from Vector and BM25 retrievers."""
k = 60.0 # `k` is a parameter used to control the impact of outlier rankings.
fused_scores = {}
text_to_node = {}
for nodes_with_scores in results_dict.values():
for rank, node_with_score in enumerate(
sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)
):
text = node_with_score.node.get_content()
text_to_node[text] = node_with_score
if text not in fused_scores:
fused_scores[text] = 0.0
fused_scores[text] += 1.0 / (rank + k)
reranked_results = dict(sorted(fused_scores.items(), key=lambda x: x[1], reverse=True))
reranked_nodes: List[NodeWithScore] = []
for text, score in reranked_results.items():
if text in text_to_node:
node = text_to_node[text]
node.score = score
reranked_nodes.append(node)
else:
if self.verbose:
print(f"Warning: Text not found in `text_to_node`: {text}")
return reranked_nodes[:similarity_top_k]
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve nodes given query."""
if self._rewriter:
category = self.classify_query(query_bundle.query_str)
if self.verbose and category:
print(f"Classified Category: {category}")
classification_result, params = self.classify_query_and_get_params(query_bundle.query_str)
self._classification_result = classification_result
top_k = params["top_k"]
if self._reranker_model_name:
self._reranker = SentenceTransformerRerank(model=self._reranker_model_name, top_n=top_k)
if self.verbose:
print(f"Initialized reranker with top_n: {top_k}")
num_queries = 3 if top_k == 5 else 5 if top_k == 7 else 7
if self.verbose:
print(f"Number of Query Rewrites: {num_queries}")
if self._rewriter:
queries = self.generate_queries(query_bundle.query_str, category, num_queries=num_queries)
if self.verbose:
print(f"Generated Queries: {queries}")
else:
queries = [query_bundle.query_str]
active_retrievers = []
if self._vector_retriever:
active_retrievers.append(self._vector_retriever)
if self._bm25_retriever:
active_retrievers.append(self._bm25_retriever)
if not active_retrievers:
raise ValueError("No active retriever provided!")
results = {}
if active_retrievers:
results = asyncio.run(self.run_queries(queries, active_retrievers))
if self.verbose:
print(f"Fusion Results: {results}")
final_results = self.fuse_vector_and_bm25_results(results, similarity_top_k=top_k)
if self._reranker:
final_results = self._reranker.postprocess_nodes(final_results, query_bundle)
if self.verbose:
print(f"Reranked Results: {final_results}")
else:
final_results = final_results[:top_k]
if self._rewriter:
unique_nodes = {}
for node in final_results:
content = node.node.get_content()
if content not in unique_nodes:
unique_nodes[content] = node
final_results = list(unique_nodes.values())
if self.verbose:
print(f"Final Results: {final_results}")
return final_results
def get_classification_result(self) -> str:
return getattr(self, "_classification_result", None)
class HyPARetriever(PARetriever):
"""Custom retriever that extends PARetriever with knowledge graph (KG) search."""
def __init__(
self,
llm, # LLM for query generation
vector_retriever: Optional[VectorIndexRetriever] = None,
bm25_retriever: Optional[BaseRetriever] = None,
kg_index=None, # Pass the knowledge graph index
property_index: bool = True, # Whether to use the property graph for retrieval
pg_filters=None,
**kwargs, # Pass any additional arguments to PARetriever
):
# Initialize PARetriever to reuse all its functionality
super().__init__(
llm=llm,
vector_retriever=vector_retriever,
bm25_retriever=bm25_retriever,
**kwargs
)
# Initialize knowledge graph (KG) specific components
self._pg_filters = pg_filters
self._kg_index = kg_index
self.property_index = property_index
def _initialize_kg_retriever(self, params):
"""Initialize the KG retriever based on retrieval mode."""
graph_index = self._kg_index
filters = self._pg_filters
if self._kg_index and not self.property_index:
# If not using property index, use KGTableRetriever
return KGTableRetriever(
index=self._kg_index,
retriever_mode='hybrid',
max_keywords_per_query=params["max_keywords_per_query"],
max_knowledge_sequence=params["max_knowledge_sequence"]
)
elif self._kg_index and self.property_index:
# If using property index, use the simpler graph index retriever
# Use this for the DEMO
vector_retriever = VectorContextRetriever(
graph_store=graph_index.property_graph_store,
similarity_top_k=params["max_keywords_per_query"],
path_depth=params["max_knowledge_sequence"],
include_text=True,
filters=filters
)
synonym_retriever = LLMSynonymRetriever(
graph_store=graph_index.property_graph_store,
llm=self._llm,
include_text=True,
filters=filters
)
return graph_index.as_retriever(sub_retrievers=[vector_retriever, synonym_retriever])
#return graph_index.as_retriever(similarity_top_k=params["top_k"])
return None
def _combine_with_kg_results(self, vector_bm25_results, kg_results):
"""Combine KG results with vector and BM25 results."""
vector_ids = {n.node.id_ for n in vector_bm25_results}
kg_ids = {n.node.id_ for n in kg_results}
combined_results = {n.node.id_: n for n in vector_bm25_results}
combined_results.update({n.node.id_: n for n in kg_results})
if self._mode == "AND":
result_ids = vector_ids.intersection(kg_ids)
else:
result_ids = vector_ids.union(kg_ids)
return [combined_results[rid] for rid in result_ids]
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve nodes with KG integration."""
# Call PARetriever's _retrieve to get the vector and BM25 results
final_results = super()._retrieve(query_bundle)
# If we have a KG index, initialize the retriever
if self._kg_index:
kg_retriever = self._initialize_kg_retriever(self.classify_query_and_get_params(query_bundle.query_str)[1])
if kg_retriever:
kg_nodes = kg_retriever.retrieve(query_bundle)
# Only combine KG and vector/BM25 results if property_index is True
if self.property_index:
final_results = self._combine_with_kg_results(final_results, kg_nodes)
return final_results
import os
from dotenv import load_dotenv
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.core import VectorStoreIndex, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import KGTableRetriever, VectorIndexRetriever
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.chat_engine import ContextChatEngine
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer
from llama_index.core import KnowledgeGraphIndex
from retrievers import PARetriever, HyPARetriever
def load_documents():
"""Load and return documents from specified file paths."""
loader = PyMuPDFReader()
documents1 = loader.load(file_path="../../legal_data/LL144/LL144.pdf")
documents2 = loader.load(file_path="../../legal_data/LL144/LL144_Definitions.pdf")
return documents1 + documents2
def create_indices(documents, llm, embed_model):
"""Create and return VectorStoreIndex and KnowledgeGraphIndex from documents."""
splitter = SentenceSplitter(chunk_size=512)
vector_index = VectorStoreIndex.from_documents(
documents,
embed_model=embed_model,
transformations=[splitter]
)
"""graph_index = KnowledgeGraphIndex.from_documents(
documents,
max_triplets_per_chunk=5,
llm=llm,
embed_model=embed_model,
include_embeddings=True,
transformations=[splitter]
)"""
return vector_index#, graph_index
def create_retrievers(vector_index, graph_index, llm, category_list):
"""Create and return the PA and HyPA retrievers."""
vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=10)
bm25_retriever = BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10)
PA_retriever = PARetriever(
llm=llm,
categories_list=category_list,
rewriter=True,
vector_retriever=vector_retriever,
bm25_retriever=bm25_retriever,
classifier_model="rk68/distilbert-q-classifier-3",
verbose=False
)
HyPA_retriever = HyPARetriever(
llm=llm,
categories_list=category_list,
rewriter=True,
kg_index=graph_index,
vector_retriever=vector_retriever,
bm25_retriever=bm25_retriever,
classifier_model="rk68/distilbert-q-classifier-3",
verbose=False,
property_index=False
)
return PA_retriever, HyPA_retriever
def create_chat_engine(retriever, memory):
"""Create and return the ContextChatEngine using the provided retriever and memory."""
return ContextChatEngine.from_defaults(
retriever=retriever,
verbose=False,
chat_mode="context",
memory_cls=memory,
memory=memory
)
def main():
# Initialize environment and LLM
gpt35_creds, gpt4o_mini_creds, gpt4o_creds = initialize_openai_creds()
llm_gpt35 = create_llm(gpt35_creds=gpt35_creds, gpt4o_mini_creds=gpt4o_mini_creds, gpt4o_creds=gpt4o_creds)
# Set global settings for embedding model and LLM
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5")
Settings.embed_model = embed_model
Settings.llm = llm_gpt35
category_list = [
'5-301 Bias Audit',
'5-302 Data Requirements',
'§ 5-303 Published Results',
'§ 5-304 Notice to Candidates and Employees'
]
# Load documents and create indices
documents = load_documents()
vector_index, graph_index = create_indices(documents, llm_gpt35, embed_model)
# Create retrievers
PA_retriever, HyPA_retriever = create_retrievers(vector_index, graph_index, llm_gpt35, category_list)
# Initialize chat memory
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
# Create chat engines
PA_chat_engine = create_chat_engine(PA_retriever, memory)
HyPA_chat_engine = create_chat_engine(HyPA_retriever, memory)
# Sample question and response
question = "What is a bias audit?"
PA_response = PA_chat_engine.chat(question)
HyPA_response = HyPA_chat_engine.chat(question)
# Output responses in a nicely formatted manner
print("\n" + "="*50)
print(f"Question: {question}")
print("="*50)
print("\n------- PA Retriever Response -------")
print(PA_response)
print("\n------- HyPA Retriever Response -------")
print(HyPA_response)
print("="*50 + "\n")
if __name__ == '__main__':
main()
|