|
import streamlit as st |
|
import pandas as pd |
|
from datasets import load_dataset, Dataset |
|
from random import sample |
|
from utils.metric import Regard |
|
from utils.model import gpt2 |
|
import matplotlib.pyplot as plt |
|
import os |
|
|
|
|
|
st.title('Gender Bias Analysis in Text Generation') |
|
|
|
|
|
def check_password(): |
|
def password_entered(): |
|
if password_input == os.getenv('PASSWORD'): |
|
|
|
st.session_state['password_correct'] = True |
|
else: |
|
st.error("Incorrect Password, please try again.") |
|
|
|
password_input = st.text_input("Enter Password:", type="password") |
|
submit_button = st.button("Submit", on_click=password_entered) |
|
|
|
if submit_button and not st.session_state.get('password_correct', False): |
|
st.error("Please enter a valid password to access the demo.") |
|
|
|
|
|
if not st.session_state.get('password_correct', False): |
|
check_password() |
|
else: |
|
st.sidebar.success("Password Verified. Proceed with the demo.") |
|
|
|
if 'data_size' not in st.session_state: |
|
st.session_state['data_size'] = 10 |
|
if 'bold' not in st.session_state: |
|
bold = pd.DataFrame({}) |
|
bold_raw = pd.DataFrame(load_dataset("AlexaAI/bold", split="train")) |
|
for index, row in bold_raw.iterrows(): |
|
bold_raw_prompts = list(row['prompts']) |
|
bold_raw_wikipedia = list(row['wikipedia']) |
|
bold_expansion = zip(bold_raw_prompts, bold_raw_wikipedia) |
|
for bold_prompt, bold_wikipedia in bold_expansion: |
|
bold = bold._append( |
|
{'domain': row['domain'], 'name': row['name'], 'category': row['category'], 'prompts': bold_prompt, |
|
'wikipedia': bold_wikipedia}, ignore_index=True) |
|
st.session_state['bold'] = Dataset.from_pandas(bold) |
|
if 'female_bold' not in st.session_state: |
|
st.session_state['female_bold'] = [] |
|
if 'male_bold' not in st.session_state: |
|
st.session_state['male_bold'] = [] |
|
|
|
st.subheader('Step 1: Set Data Size') |
|
data_size = st.slider('Select number of samples per category:', min_value=1, max_value=50, |
|
value=st.session_state['data_size']) |
|
st.session_state['data_size'] = data_size |
|
|
|
if st.button('Show Data'): |
|
st.session_state['female_bold'] = sample( |
|
[p for p in st.session_state['bold'] if p['category'] == 'American_actresses'], data_size) |
|
st.session_state['male_bold'] = sample( |
|
[p for p in st.session_state['bold'] if p['category'] == 'American_actors'], data_size) |
|
|
|
st.write(f'Sampled {data_size} female and male American actors.') |
|
st.write('**Female Samples:**', pd.DataFrame(st.session_state['female_bold'])) |
|
st.write('**Male Samples:**', pd.DataFrame(st.session_state['male_bold'])) |
|
|
|
if st.session_state['female_bold'] and st.session_state['male_bold']: |
|
st.subheader('Step 2: Generate Text') |
|
|
|
if st.button('Generate Text'): |
|
GPT2 = gpt2() |
|
st.session_state['male_prompts'] = [p['prompts'] for p in st.session_state['male_bold']] |
|
st.session_state['female_prompts'] = [p['prompts'] for p in st.session_state['female_bold']] |
|
st.session_state['male_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in |
|
st.session_state['male_bold']] |
|
st.session_state['female_wiki_continuation'] = [p['wikipedia'].replace(p['prompts'], '') for p in |
|
st.session_state['female_bold']] |
|
|
|
progress_bar = st.progress(0) |
|
|
|
st.write('Generating text for male prompts...') |
|
male_generation = GPT2.text_generation(st.session_state['male_prompts'], pad_token_id=50256, max_length=50, |
|
do_sample=False, truncation=True) |
|
st.session_state['male_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in |
|
zip(male_generation, st.session_state['male_prompts'])] |
|
|
|
progress_bar.progress(50) |
|
|
|
st.write('Generating text for female prompts...') |
|
female_generation = GPT2.text_generation(st.session_state['female_prompts'], pad_token_id=50256, |
|
max_length=50, do_sample=False, truncation=True) |
|
st.session_state['female_continuations'] = [gen[0]['generated_text'].replace(prompt, '') for gen, prompt in |
|
zip(female_generation, st.session_state['female_prompts'])] |
|
|
|
progress_bar.progress(100) |
|
st.write('Text generation completed.') |
|
|
|
if st.session_state.get('male_continuations') and st.session_state.get('female_continuations'): |
|
st.subheader('Step 3: Sample Generated Texts') |
|
|
|
st.write("Male Data Samples:") |
|
samples_df = pd.DataFrame({ |
|
'Male Prompt': st.session_state['male_prompts'], |
|
'Male Continuation': st.session_state['male_continuations'], |
|
'Male Wiki Continuation': st.session_state['male_wiki_continuation'], |
|
}) |
|
st.write(samples_df) |
|
|
|
st.write("Female Data Samples:") |
|
samples_df = pd.DataFrame({ |
|
'Female Prompt': st.session_state['female_prompts'], |
|
'Female Continuation': st.session_state['female_continuations'], |
|
'Female Wiki Continuation': st.session_state['female_wiki_continuation'], |
|
}) |
|
st.write(samples_df) |
|
|
|
if st.button('Evaluate'): |
|
st.subheader('Step 4: Regard Results') |
|
regard = Regard("inner_compare") |
|
st.write('Computing regard results to compare male and female continuations...') |
|
|
|
with st.spinner('Computing regard results...'): |
|
regard_male_results = regard.compute(data=st.session_state['male_continuations'], |
|
references=st.session_state['male_wiki_continuation']) |
|
st.write('**Raw Regard Results:**') |
|
st.json(regard_male_results) |
|
st.session_state['rmr'] = regard_male_results |
|
|
|
regard_female_results = regard.compute(data=st.session_state['female_continuations'], |
|
references=st.session_state['female_wiki_continuation']) |
|
st.write('**Average Regard Results:**') |
|
st.json(regard_female_results) |
|
st.session_state['rfr'] = regard_female_results |
|
|
|
if st.button('Plot'): |
|
st.subheader('Step 5: Regard Results Plotting') |
|
categories = ['GPT2', 'Wiki'] |
|
|
|
mp_gpt = st.session_state['rmr']['no_ref_diff_mean']['positive'] |
|
mn_gpt = st.session_state['rmr']['no_ref_diff_mean']['negative'] |
|
mo_gpt = 1 - (mp_gpt + mn_gpt) |
|
|
|
mp_wiki = mp_gpt - st.session_state['rmr']['ref_diff_mean']['positive'] |
|
mn_wiki = mn_gpt -st.session_state['rmr']['ref_diff_mean']['negative'] |
|
mo_wiki = 1 - (mn_wiki + mp_wiki) |
|
|
|
fp_gpt = st.session_state['rfr']['no_ref_diff_mean']['positive'] |
|
fn_gpt = st.session_state['rfr']['no_ref_diff_mean']['negative'] |
|
fo_gpt = 1 - (fp_gpt + fn_gpt) |
|
|
|
fp_wiki = fp_gpt - st.session_state['rfr']['ref_diff_mean']['positive'] |
|
fn_wiki = fn_gpt - st.session_state['rfr']['ref_diff_mean']['negative'] |
|
fo_wiki = 1 - (fn_wiki + fp_wiki) |
|
|
|
positive_m = [mp_gpt, mp_wiki] |
|
other_m = [mo_gpt, mo_wiki] |
|
negative_m = [mn_gpt, mn_wiki] |
|
|
|
positive_f = [fp_gpt, fp_wiki] |
|
other_f = [fo_gpt, fo_wiki] |
|
negative_f = [fn_gpt, fn_wiki] |
|
|
|
|
|
fig_a, ax_a = plt.subplots() |
|
ax_a.bar(categories, negative_m, label='Negative', color='blue') |
|
ax_a.bar(categories, other_m, bottom=negative_m, label='Other', color='orange') |
|
ax_a.bar(categories, positive_m, bottom=[negative_m[i] + other_m[i] for i in range(len(negative_m))], |
|
label='Positive', color='green') |
|
|
|
plt.xlabel('Categories') |
|
plt.ylabel('Proportion') |
|
plt.title('GPT vs Wiki on male regard') |
|
plt.legend() |
|
|
|
st.pyplot(fig_a) |
|
|
|
fig_b, ax_b = plt.subplots() |
|
ax_b.bar(categories, negative_f, label='Negative', color='blue') |
|
ax_b.bar(categories, other_f, bottom=negative_f, label='Other', color='orange') |
|
ax_b.bar(categories, positive_f, bottom=[negative_f[i] + other_f[i] for i in range(len(negative_f))], |
|
label='Positive', color='green') |
|
|
|
plt.xlabel('Categories') |
|
plt.ylabel('Proportion') |
|
plt.title('GPT vs Wiki on female regard') |
|
plt.legend() |
|
st.pyplot(fig_b) |
|
|
|
m_increase = mp_gpt - mn_gpt |
|
m_relative_increase = mp_gpt - mp_wiki - (mn_gpt - mn_wiki) |
|
f_increase = fp_gpt - fn_gpt |
|
f_relative_increase = fp_gpt - fp_wiki - (fn_gpt - fn_wiki) |
|
|
|
absolute_difference = [m_increase, f_increase] |
|
relative_difference = [m_relative_increase, f_relative_increase] |
|
|
|
new_categories = ['Male', 'Female'] |
|
|
|
fig_c, ax_c = plt.subplots() |
|
ax_c.bar(new_categories, absolute_difference, label='Positive - Negative', color='#40E0D0') |
|
|
|
plt.xlabel('Categories') |
|
plt.ylabel('Proportion') |
|
plt.title('Difference of positive and negative: Male vs Female') |
|
plt.legend() |
|
st.pyplot(fig_c) |
|
|
|
fig_d, ax_d = plt.subplots() |
|
ax_d.bar(new_categories, relative_difference, label='Positive - Negative', color='#40E0D0') |
|
|
|
plt.xlabel('Categories') |
|
plt.ylabel('Proportion') |
|
plt.title('Difference of positive and negative (relative to Wiki): Male vs Female') |
|
plt.legend() |
|
st.pyplot(fig_d) |
|
|
|
|